Разное

Строение мышц ноги человека: Недопустимое название — SportWiki энциклопедия

20.05.1971

Содержание

анатомия. Простым и доступным языком

Подвижность ног, устойчивость и координация движений человека – всё это было бы невозможно без голени. Часть ноги, расположенная между коленным и голеностопным суставами, является важнейшим функциональным отделом в анатомии опорно-двигательного аппарата. Костная и мышечная системы голени, развитые в соответствии с возрастными нормами, являются той базой, которая обеспечивает большую часть двигательной активности, включая ходьбу, бег и другие передвижения организма в пространстве. Давайте разберёмся, как же устроена голень человека, от чего зависят её функциональные возможности и каким образом их можно улучшить.

Костная система голени устроена довольно примитивно и включает всего две крупные кости – большеберцовую и малоберцовую. Обе они довольно прочные, поскольку частично отвечают за поддержание тела человека в вертикальном положении, формируют походку и служат опорой для организма.

Большеберцовая кость более крупная, поскольку выполняет функцию опорной.

Расширение в верхней части, образующее два мыщелка, служит местом сочленения с крупной бедренной костью, формируя коленный сустав. Здесь же, но немного латеральнее, расположен ещё один мыщелок, благодаря которому большеберцовая и малоберцовая кости соединяются в единую костную систему.

Тело большеберцовой кости имеет форму трёхгранной призмы с основанием по задней стороне. Внутренняя и наружная стороны косточки образуют острый угол – передний край кости, который при желании можно прощупать при незначительном нажатии на поверхность ноги. В верхней части переднего края, в подколенной области, формируется выраженная бугристость, к которой крепятся мощнейшие сухожилия и мышцы голени.

Нижний конец кости также расширяется к основанию, формируя заметный выступ – медиальную лодыжку. Бугристая поверхность основания соединяется с косточками стопы, формируя голеностопный сустав.

По сравнению с большеберцовой, малоберцовая косточка выглядит тонкой и хрупкой. На самом деле это не совсем корректно: хотя она значительно уже, плотность её не уступает большеберцовой. В верхней части малоберцовая косточка имеет головку, которая, совпадая по размеру с латеральным мыщелком большеберцовой кости, образует прочное сочленение.

Нижняя часть малоберцовой кости также расширяется, образуя латеральную лодыжку. Она заметно выступает над поверхностью голени, поэтому её легко можно прощупать, даже не напрягая ногу.

Большеберцовая и малоберцовая кости сверху соединяются посредством плоского сустава, относящегося к группе малоподвижных. Этот сустав дополнительно иммобилизован довольно прочным связочным аппаратом, который удерживает комплекс. По всей длине голени между костями располагается межкостная перепонка, которая книзу переходит в синдесмоз, соединяющий нижние концы большеберцовой и малоберцовой костей.

Костные структуры голени окружены плотным кольцом мышц, благодаря которым нога остаётся подвижной, начиная со стопы и заканчивая коленом. В зависимости от локализации все мышцы классифицируют на три отдельные группы: переднюю, заднюю и латеральную. Передняя группа мышечных волокон отвечает за супинацию, разгибание и приведение стопы, а также разгибание пальцев ног. Задняя группа выступает антагонистом и контролирует сгибание стопы и пальцев. А мышцы, относящиеся к латеральной группе, контролируют отведение, пронацию и сгибание стопы.

  1. Передняя большеберцовая мышца располагается на всём протяжении голени, начинаясь в верхнем отделе межкостной перепонки и заканчиваясь на медиальной клиновидной и первой плюсневой косточках стопы. Её функции заключаются в разгибании и супинации стопы. В области лодыжки её пересекают верхняя и нижняя связки, которые удерживают разгибающие сухожилия. Тело мышцы легко прощупывается на передней поверхности голени, особенно в области перехода к голеностопному суставу, где её сухожилие заметно выпирает при усиленном разгибании ступни.
  2. Длинный разгибатель пальцев стопы – многосуставная мышца, которая начинается у верхнего края большеберцовой и малоберцовой костей и, разделяясь на четыре сухожилия на поверхности стопы, прикрепляется к дистальным фалангам 2–5 пальцев.
    И хотя основной функцией этой мышцы является разгибание пальцев ног, частично она принимает участие также в разгибании и пронации стопы.
  3. Длинный разгибатель большого пальца – самая маленькая и слабая мышца среди рассматриваемой группы. Она начинается в нижней части голени и закрепляется на поверхности дистальной фаланги. Помимо разгибания большого пальца, указанная мышца участвует в супинации и разгибании ступни.
  1. Малоберцовая длинная мышца полностью покрывает одноимённую кость, охватывая латеральную лодыжку сверху и закрепляясь между наружной поверхностью малоберцовой кости и первой плюсневой косточкой. В области перехода к пяточной кости она удерживается плотным переплетением связок (нижним и верхним удерживателями сухожилий). Благодаря этой мышце человек может выполнять сгибание, отведение и пронацию ступни.
  2. Короткая малоберцовая мышца служит агонистом длинной, отвечая за пронацию, отведение и сгибание стопы. Она берёт начало у межкостной перегородки, огибает лодыжку снизу и закрепляется у пятой плюсны.
  1. Трёхглавая мышца – самая мощная и объемная среди мышц голени. Она располагается на задней поверхности и формирует так называемые икры – выпирающую часть, особенно развитую у спортсменов. Две головки из трёх – медиальная и латеральная икроножные – располагаются поверхностно, а третья – камбаловидная – залегает в глубоких слоях. Все три головки трёхглавой мышцы объединяются в одно целое у пяточной кости, формируя ахиллово, или пяточное, сухожилие. Функции трёхглавой мышцы крайне многогранны. Икроножные головки осуществляют сгибание коленного и голеностопного суставов, а камбаловидная – сгибание ступни. Кроме того, головки икроножной мышцы принимают участие в формировании ромбовидной подколенной ямки, через которую проходят основные нервные пучки и сосуды, питающие бедро и голень.
  2. Подошвенная мышца рудиментарна, поэтому фигурирует в анатомии голени далеко не всегда. Она начинается у коленного сустава и направляется вниз, пролегая немного медиальнее центра. В нижней части голени мышца преобразуется в тонкую продольную связку, которая залегает в толще трёхглавой мышцы, между камбаловидной и икроножной головками. Спускаясь к пяточной кости, связка подошвенной мышцы вплетается в ахиллово сухожилие, формируя единый комплекс.
  3. Подколенная мышца прилегает к задней плоскости коленного сустава. Она имеет короткую плоскую форму и частично закрепляется у суставной капсулы колена, что позволяет ей в момент сгибания ноги оттягивать капсульную стенку. Кроме того, подколенная мышца участвует в сгибании и пронации голени.
  4. Задняя большеберцовая мышца прилегает непосредственно к костным структурам и прячется под телом трёхглавой. Вместе с внутренней стенкой камбаловидной мышцы она формирует узкий голенно-подколенный канал, через который проходит основная часть кровеносных сосудов и нервных волокон нижней конечности. Также задняя большеберцовая мышца играет роль сгибателя и супинатора ступни.
  5. Длинный сгибатель пальцев является антагонистом разгибателя, относящегося к группе передних мышц голени. Эта мышца начинается у задней стенки большеберцовой кости, разделяется на четыре сухожилия и прикрепляется к подошвенной поверхности дистальных фаланг 2–5 пальцев ног. Функционал длинного сгибателя затрагивает не только пальцы, но и стопу: благодаря скоординированному сокращению этой мышцы происходит сгибание и супинация ноги в голеностопе.
  6. Длинный сгибатель большого пальца – самый сильный среди глубоких задних мышц. Он соединяет нижнюю часть малоберцовой кости и дистальную фалангу большого пальца, вызывая при сокращении сгибание стопы и непосредственно пальца.

Несмотря на высокую функциональность, анатомия голени устроена довольно просто. Эта часть нижних конечностей легко поддается тренировкам, благодаря которым можно значительно укрепить мышечный каркас человеческого тела. Мышцы голени, особенно задние, способны стать значительно крепче даже при регулярной ходьбе, не говоря уже о специальных занятиях, нацеленных на развитие ног. Пробежки и пешие прогулки в быстром темпе, гимнастика, занятия йогой или лёгкой атлетикой – всё это позволяет развить голени, сделать их более устойчивыми и крепкими, что впоследствии может уберечь от проблем с опорно-двигательным аппаратом.

Кроме того, на состоянии мышц и костей голени, как, впрочем, и на всём организме, положительно скажется здоровый образ жизни, регулярные прогулки на свежем воздухе, особенно в безоблачный день, когда под воздействием солнечных лучей организм может получить дополнительную дозу витамина «D», а также правильное питание, богатое витаминами и микроэлементами. Чтобы кости оставались прочными и могли справляться с высокими нагрузками, употребляйте в пищу следующие продукты:

  • семена чиа, кунжут, капуста, инжир, репа, шпинат, белая фасоль, миндаль – главные источники кальция;
  • кукуруза, ячмень, овёс, пшеница, брокколи, бобы, тыквенные и подсолнечные семена, богатые фосфором;
  • миндаль, кешью, шпинат, отруби, батат, фасоль, благодаря которым можно восполнить дефицит магния;
  • морские водоросли, лисички и дрожжи – пищевые источники кальциферола;
  • листовые овощи, капуста, зелёные помидоры и салат – в них содержится витамин «К».

И, конечно, стоит принять во внимание водный баланс в клетках организма, ведь без достаточного количества жидкости мышцы быстро ослабнут и потеряют эластичность. Соблюдая эти рекомендации, вы сможете поддерживать голени в идеальной физической форме, что послужит отличной профилактикой заболеваний опорно-двигательного аппарата.

​Основы человеческой анатомии: мышцы и другие ткани тела

В предыдущих уроках мы познакомились с общим строением и различными положениями тела. Теперь мы готовы нарастить ему плоть, и главным образом это означает мышечный слой, поскольку именно он определяет внешний вид объектов.

Понимание того, что нужно рисовать

При упоминании уроков по рисованию мышц в памяти всплывают медицинские таблицы, но такие сложности нам ни к чему. Мы должны знать лишь то, что видно под кожей, потому что именно это мы и рисуем: в реальной жизни придется попотеть, чтобы отыскать человека, на чьем теле мышцы видны в деталях (в основном это бодибилдеры и некоторые атлеты). К тому же только отдельная ниша иллюстраторов придает внимание детализации мышц в своей работе, например художники комиксов о супергероях.

Таким образом, нам достаточно будет начать с понимания основ, а затем уже двигаться в сторону медицинских таблиц, если в этом будет необходимость.

В графиках ниже разными цветами я выделю группы мышц, а черной линией покажу формы, которые будут видны под кожей (а также выступающие кости, которые тоже будут заметны).

У каждого из нас под кожей находится жировой слой, который зрительно сглаживает форму находящихся под ней мышц. Возьмите угловатый объект, скажем, коробку, и накройте ее тонкой тканью, например простыней. Взгляните на то, как выглядят углы. А затем накройте ее толстым полотенцем. Видите, как угловатость сглаживается? Именно это происходит с телом.

Итак, этот жировой слой, похожий на толстое полотенце, как правило, толще у жителей холодных районов, а также у женщин, в то время как у мужчин больше мышечной массы. Более того, жизнь каждого отдельного человека создает бесконечное количество вариаций. Человек можете быть мускулистым, но иметь толстый жировой слой, который придает ему обманчиво пухлый вид. Он может быть настолько худощавым, что о мышечной массе и речи не идет. Или оказаться средней накаченности, но иметь так мало жировых отложений, что тело кажется высеченным из камня (имеет «мускулистый» вид). А также любым промежуточным вариантом.

Гид по мышцам

Примечания о работе мышц:

  1. Задача мышцы – соединить точки, к которым крепятся ее концы. Этот простой факт поможет вам определить, с каким движением связана конкретная мышца.
  2. Задействованная мышца (сокращенная) твердая и выступает под кожей (в определенной степени, чем больше прилагается усилий, тем сильнее она выступает).
  3. Незадействованная мышца (расслабленная) не выступает и может быть мягкой при нажатии.
  4. Мышца может только тянуть – не толкать: чтобы вернуться в исходное положение, ей требуется мышца противоположного действия (антагонист). Поэтому большинство мышц объединены в антагонистические пары и, когда сокращается одна мышца в паре, другая обязательно расслабляется. Например, когда вы сгибаете ногу, мышца, которая отвечает за ее разгибание, не может выступать и наоборот (вы можете намеренно напрячь все мышцы, скажем, чтобы блокировать удар, но в этом случае вы не сможете двигаться).

Если вы усвоите сказанное выше, вы всегда будете знать, какие мышцы должны выделяться в каждом конкретном случае, независимо от того, какое именно движение вы рисуете. Так вы сможете избежать анатомической бессмыслицы. Перед вами иллюстрация того, что состояние мышц определяется не положением конечности, а движением:

На схемах ниже мышцы, подписанные одним цветом, объединены в антагонистические пары, и это значит, что они не должны изображаться выступающими одновременно.

Туловище

Ниже представлены мышцы туловища, о которых вы должны знать. Также обратите внимание на две пары костей:

  • Ключицы, которые видны всегда, за исключением тех случаев, когда их скрывает необычайно толстый жировой слой.
  • Лопатки, выступающие, если мышцы спины недостаточно развиты, чтобы скрыть их. Видимость лопаток также зависит от движений рук, наклона туловища и так далее, поэтому будет полезно понаблюдать за ними в жизни.

Очевидно, что, поскольку я стараюсь показать все возможные линии мышц, в результате мы получаем очень мускулистое сухое тело, в то время как на менее накаченных телах линий будет видно меньше: сравните нашу исходную модель с ярко выраженными мышцами, чтобы продемонстрировать линии, и среднестатистическую фигуру, на которой линий заметно меньше, а лопатки выступают сильнее, чем мышцы спины. Обратите внимание на менее выраженные плечи и более широкую талию. То же касается и женщин, однако их грудные мышцы скрыты под молочными железами, поэтому достаточно изображать последние.

Руки

Перед вами другой пример – мышцы рук:

Внешне строение руки среднестатистического человека выглядит так:

Ноги

Обратите внимание еще на две кости на рисунке ниже: надколенник (коленную чашечку) и большеберцовую кость, от которых зависит вид голени спереди. Там и в самом деле почти нет мышц. Вот почему удар по голени такой болезненный – его нечему смягчать. Можно иметь мощные, необычайно развитые икры, но их антагонисты, передние большеберцовые мышцы, никогда не вырастут до таких размеров.

Также заметьте, что лодыжка выступает с обеих сторон стопы, но со внутренней она выше. И наконец, ахиллово сухожилие, которое, как понятно из названия, мышцей не является: хотя оно и может отчетливо выделяться у людей с хорошо развитыми мышцами ног, оно не в состоянии сокращаться и, следовательно, бугриться под кожей, как это делают мышцы (его задача – крепить мышцу к кости, а не двигаться).

Жировая ткань

Как было сказано выше, у всех нас есть подкожный жировой слой. Он может быть минимальной толщины у самых мускулистых атлетов или вообще отсутствовать у голодающих, но даже у здоровых людей он есть – на самом деле именно благодаря ему тело воспринимается как здоровое, а не «мешок с костями».

Кроме того, жировые отложения располагаются в определенных участках тела, и эти участки у мужчин и женщин разные! Как видно на рисунке ниже, жировая ткань у женщин откладывается на внутренней поверхности плечей, на бедрах и ягодицах, в то время как у мужчин – в области живота.

Значит ли это, что на остальных частях тела жир не откладывается? Нет, это значит лишь то, что эти участки «заполняются» первыми. Стройная девушка, набирающая вес, сначала заметит отложения на бедрах и ягодицах (aka «я не влажу в джинсы!»), потом на внутренней поверхности плечей, а мужчина первым делом отметит появление «пивного пуза» (и наоборот, при потере веса с этих частей тела жир исчезает в последнюю очередь, если вообще исчезает).

Затем, если вес продолжает увеличиваться, слой подкожного жира начинает расти вслед за жировыми отложениями, и мы видим, как вес распределяется по всему телу. Наконец, в особо запущенных случаях везде, где кожа может растягиваться, появляются складки.

Также имейте в виду:

  • Тенденция накапливать жировые отложения возрастает после сорока.
  • После менопаузы жировые отложения у женщин перераспределяются в область живота и далее накапливаются, как у мужчин.

Грудь

Еще одна часть тела, строение которой нужно знать, — это женская грудь. Вы получите уважение и благодарность половины человечества, если будете рисовать ее как есть, а не так, как это делают в большинстве комиксов.

Для начала пара слов об анатомии: грудь – это не мешочки мягкой ткани. Это железы, а значит, в них есть плотное тело, окруженные мягкой жировой тканью. Из этого также следует, что они имеют вес и поддаются воздействию гравитации. Наличие жировой ткани означает, что грудь действительно увеличивается или уменьшается в размере по мере того, как женщина набирает или теряет вес. Более того, интенсивные тренировки идут рука об руку с уменьшением груди, которое может быть незаметным или значительным (что можно наблюдать у женщин-атлетов и в особенности тех из них, кто начал тренировки до полового созревания).

Грудь бывает разных форм и размеров, поэтому вывести общие пропорции и рекомендации очень непросто. Так что, как в случае с телом ростом в 8 голов, мы начнем с идеально пропорциональной груди в понимании западного общества, которую можно наблюдать в руководствах по реконструктивной хирургии:

Эта короткая лекция должна направить вас на верный путь. Я понимаю, что найти референсы натуральной груди практически невозможно, потому что поисковые системы выдают сомнительные результаты, а на менее связанных с запросом источниках (например, в магазинах нижнего белья) можно найти изображения груди, которая подчеркивает достоинства продукции, и только. Но можно понаблюдать за одетыми женщинами – так, чтобы это не выглядело странно, пожалуйста, – и за тем, как эта часть тела двигается и влияет на их осанку.

Время практики

В этом уроке мы подробно разобрали большой объем информации, который нужно усвоить. Встаньте перед зеркалом и найдите на своем теле каждую из описанных здесь мышц. Не обязательно запоминать их названия – смысл в том, чтобы понять, какие где находятся (если вы занимаетесь спортом, вы уже наверняка знаете немало).

Может оказаться, что вам потребуется выполнить определенное движение или коснуться одной частью тела другой, или найти конкретный угол освещения, чтобы заметить некоторые из них. Это лучший способ уствоить и понять этот материал, потому что мышцы – настолько подвижная часть тела, что даже лучшие в мире схемы и таблицы не могут это передать. Поняв, как они устроены и работают внутри, вы сможете определить внутреннее строение других тел и нарисовать их с полным пониманием того, что вы делаете.

Посмотрите на фотографии людей, статичных или в движении, чьи мышцы видны отчетливо. Набросайте их и разным цветом наметьте мышцы – каждую из них, скрытых под кожей. Также отметьте выступающие кости и т.д.

Когда вы станете более уверены в своих силах, возьмите менее рельефные модели без подсказок, видимых снаружи. В какой момент не остается ни одного намека на то, как выглядит внутреннее строение?

Рисуйте с нуля, как в случае с базовой фигуркой из палочек, затем нарастите ей мышцы и проведите контур кожи, и не забудьте о груди для женских фигур.

Оригинал: Human Anatomy Fundamentals: Muscles and Other Body Mass

Автор: Joumana Medlej

Анатомия мышц человека (бодибилдера)

Каждому начинающему бодибилдеру, и просто любознательным людям, будет полезно узнать анатомию скелетных мышц человека, для того чтобы ориентироваться в силовых тренировочных программах, особенно когда речь идет о сплит-тренинге, а также, чтобы мы друг друга понимали, когда вы задаете вопросы о том, как можно накачать ту или иную мышечную группу.

Кроме того, знание мускулатуры, вам поможет в будущем лучше прорабатывать с помощью подобранных упражнений все части тела, благодаря тому, что у вас будет уже не однобокое понимание устройства мышечных групп.

Например, многие атлеты, до сих пор в погоне за шарообразными плечами, не знают, что дельты состоят из передней, средней и задней головки, поэтому чтобы накачать плечи как шарик, необходимо делать все упражнения, которые развивают все три пучка дельт, а не только любимый жим штанги/гантелей вверх с акцентом на передние и средние дельты.

Всего в теле насчитывается более 600 скелетных мышц, и все они состоят из волокон разной длины (до 13 см), и толщины (от 40 до 80 мкм), но мы рассмотрим только основные группы, так как знание остальных, не несет никакой практической пользы для бодибилдинга.

Основные группы мышц человека

Строение и функции скелетных мышц человека

Анатомия и функция основных скелетных мышц человека, на примере бодибилдера, с красочной прорисовкой и нумерацией мускулатуры, для еще большей наглядности. А в конце единое фото с подписями мышечных групп культуриста.

Шея

Шея соединяет голову с туловищем, основная функция – обеспечение равновесия и движения головой, а также помощь в глотании и произнесения звуков.

  • Лопаточно-подъязычная мышца
  • Грудино-подъязычная
  • Грудино-ключично-сосцевидная
  • Трапециевидная мышца
Мышцы шеи человека (вид сбоку и вид сзади)

Грудь

Грудные мышцы занимают обширную часть передней части туловища, крепятся они к плечевым костям, ключице, и ребрам. Осуществляют вращение рук во внутрь, подтягивание туловища при лазании, оттягивание лопатки вперед и вниз, а также помогают диафрагме осуществить дыхание.

  • Большая грудная мышца
  • Малая грудная мышца
  • Передняя зубчатая мышца
  • Подключичная мышца
  • Межреберные мышцы
Анатомия грудных мышц человека

Дельты

По форме напоминают треугольник, греческую букву «дельта». Учувствуют в отведении руки в стороны, а также разгибании и сгибании плеча. Передние пучки дельт тянут руку вперед, а задние — назад.

  • Передняя дельта
  • Средняя дельта
  • Задняя дельта
Анатомия дельт (плеч) человека

Бицепс

Мышцы бицепса состоят из длинной и короткой головки, соединяясь вместе образуют брюшко, которое крепиться к бугристости лучевой кости сухожилием.

Анатомия бицепсов (короткая и длинная головка)

Функция бицепсов – обеспечивать сгибание плеча в плечевом суставе, а предплечья в локтевом.

  • Длинная головка (на внешней части руки)
  • Короткая головка (на внутренней части руки)

Предплечье

Мышцы предплечья – мелкие мышечные группы, расположенные между локтем и запястьем, их разделяют на заднюю переднюю группу, в каждой из которых имеется свой поверхностный и глубокий слои.

Осуществляют разгибание и сгибания кисти и пальцев, а также выполняют пронирующее и супинирующее движение лучевой кости.

  • Лучевой разгибатель запястья
  • Длинная мышца, отводящая большой палец кисти
  • Круглый пронатор
  • Длинная ладонная мышца
  • Короткий лучевой разгибатель запястья
  • Короткий разгибатель большого пальца кисти
  • Сгибатель кисти
  • Плечелучевая мышца
  • Локтевой сгибатель запястья
Анатомия предплечья (плечевая мышца, лучевая мышца, сгибатели)

Пресс

Брюшной пресс осуществляет поворот туловища в сторону (вбок, вперед, назад), создает внутрибрюшное давления, защищая внутренние органы от повреждений, формирует осанку, держит позвоночник в выпрямленном положении.

Анатомия брюшного пресса человека
  • Прямая мышца живота
  • Наружная косая мышца живота
  • Внутренняя косая мышца живота
  • Поперечная мышца живота

Мышцы бедра

Осуществляют отведение, разгибание и поворот бедра наружу, подтягивание бедра к телу, разгибания голени в колене и ее поворот во внутрь, а также удерживают тело в равновесии и натягивают широкие фасции бедра, благодаря чему укрепляется коленный сустав.

Передняя группа мышц бедра
  • Портняжная
  • Четырехглавая (квадрицепс)
  • Прямая
  • Латеральная широкая
  • Медиальная широкая
  • Промежуточная широкая
Анатомия мышц передней части бедра
Задняя группа мышц бедра
  • Двуглавая (бицепс бедра)
  • Общее сухожилие
  • Полусухожильная
  • Полуперепончатая
Анатомия мышц задней части бедра
Медиальная группа мышц бедра
  • Тонкая
  • Гребенчатая
  • Длинная приводящая
  • Короткая приводящая
  • Большая приводящая
Анатомия мышц медиальной части бедра

Голень и икры

Голень занимает часть ноги, начиная от колена заканчивая пяткой, состоит из большеберцовой и малоберцовой кости. Основная функция разгибание стопы и пальцев, а также приведение и вращение разворот ступни кнаружи.

Икроножные мышцы относится к двуглавым, состоят из медиальной и латеральной головки, благодаря им человек занимает устойчивое положение в пространстве, держит балансировку тела, равновесие, может вращать голеностопный сустав, поднимать пятки, сгибать стопы.

  • Длинная малоберцовая мышца
  • Медиальная головка икроножной мышцы
  • Передняя большеберцовая мышца
  • Камбаловидная мышца
  • Короткая малоберцовая мышца
  • Длинный разгибатель пальцев
  • Верхний удерживатель разгибателей
  • Сухожилие передней большеберцовой мышцы
  • Нижний удерживатель разгибателей
Анатомия мышц голени (задняя и передняя группа)

Спина

Мышцы спины выполняют опорную роль для фиксирования позвоночника в неподвижном состоянии, за счет придания устойчивого положения позвонкам, благодаря чему возможно выполнять повороты туловищем, сгибания, разгибания и наклоны, а также поддерживают естественные изгибы (кривизну) спины и выполняют роль амортизаторов при выполнении движений, создающих вибрацию и сотрясение позвоночника.

  • Малая круглая мышца
  • Большая круглая
  • Полостная мышца
  • Ромбовидный мускул
  • Трапециевидная мышца
  • Разгибатель позвоночника
  • Широчайшие мышцы спины
  • Грудопоясничная фасция
  • Внешние косые мышцы
Анатомия мышц спины человека

Трицепс

Анатомическое строение трицепса человека

Трицепс имеет три головки, поэтому его называют трехглавой мышцей плеча, крепиться к локтевому отростку локтевой кости с помощью плоского широкого сухожилия.

Обеспечивает разгибания предплечья, а также приведение руки к туловищу и движение рукой назад.

  • Боковая (латеральная) головка
  • Длинная (задняя) головка
  • Средняя (медиальная) головка

Ягодицы

Четырехугольные большие ягодичные мышцы крепятся симметрично к костям позвоночника, таза и бедренной кости. Осуществляют функцию разгибания бедра в тазобедренном суставе, поворот бедра наружи, отведение в сторону и приведение бедра к центру, а также помогают разогнуть туловище при закреплении бедра и стабилизировать коленный сустав (благодаря натяжению широкой фасции бедра).

  • Малая ягодичная мышца
  • Средняя ягодичная мышца
  • Большая ягодичная мышца
Анатомия ягодичных мышц человека

Пропорционально слаженная, красивая мускулатура, цель любого культуриста, особенно когда дело касается соревновательного уровня, где пропорции могут решить станет атлет чемпионом или нет. Именно поэтому, ниже, мы хотим привести перечень эффективных упражнений, на каждую мышечную группу, с помощью которых, вы сможете «выточить» себе размер мышц, такой какой вы сами захотите.

Анатомия тела культуриста (бодибилдера)

Упражнения для развития скелетных мышц

Все упражнения на развития скелетных мышц можно разбить условно на два вида, изолирующие (задействуют один сустав), и базовые (задействуют два и более сустава). Вы должны в первую очередь акцентировать тренировку той или иной группы мышц на базовых, потому что они наиболее эффективно растят мышечную массу.

Анатомия скелетных мышц человека

Изолирующие упражнения хорошо подойдут для сепарации, рельефа мышц, что на начальном уровне подготовке культуриста вообще не должно волновать.

Трапеции

Мышцы трапеции относится к верхней части спины, учувствуют в поднимании и опускании плеч.

Лучшее упражнение для тренировки трапеций – шраги со штангой.

Упражнения для мышц трапеций

Широчайшие мышцы спины

Придают треугольную форму спины (особенно когда талия узкая), чем шире спина, тем больше широчайшие мышцы.

Основная функция – приведение и разгибание плеча, внутреннее круговое движение (ротацию) плеча, а также помогает опускать плечевой пояс.

Лучшее упражнение для спины – подтягивания широким хватом.

Упражнение для широчайших мышц спины

Длинная мышца спины

Данная группа мышц одна из самых сильных в человеческом организме, расположена в виде двух «столбов», которые тянуться вдоль поясничного отдела.

Основная функция — держит мышечный корсет, а также отвечает за сгибание и разгибание туловища.

Если у вас проблемы с позвоночником, или просто слабая спина, то вам просто необходимо укреплять данные мышцы.

Лучшее упражнения для укрепления «столбов» — гиперэкстензия.

Гиперэкстензия на длинные мышцы спины

Грудные мышцы

Грудные мышцы учувствуют в процессе вдоха, а также оттягивает вперед, вниз и внутрь лопатку и косвенно способствует поднятию ребер.

Лучшее упражнение — обычный жим штанги лежа на горизонтальной скамье, для атлетов, которые имеют травмы грудных мышц, в восстановительный период рекомендуем жим лежа и разведения гантелей, а также сведения рук в тренажере бабочка.

Базовое упражнение для грудных мышц

Брюшной пресс

Пресс — одна из самых «капризных» мышц в теле человека. Что бы был красивый рельефный пресс, необходимо не только часто тренировать его, но и следить за питанием (слой жира может банально скрывать рельефные кубики). Кому интересно, можете прочитать подробно, о том, как построить красивый пресс здесь.

Основная функция – стабилизация мышц живота.

Одно из самых эффективных и проверенных упражнений – скручивания на скамье под углом вниз и подъем прямых ног в висе.

Упражнение на брюшной пресс в тренажерном зале

Дельты или плечи

Дельты делятся на три основные пучка передний, средний и задний.

Функция в теле – поднимание, опускание, и вращение руки.

Если вы хотите иметь большие, накаченные плечи делайте подъем штанги сидя/стоя из-за головы и перед собой со свободным весом, а также для дополнительной, изолированной нагрузки задних дельт используйте разведения гантелей в стороны.

Базовое упражнение для дельт (плеч)

Бицепс

Бицепс участвует в сгибании руки, состоит из длинной (внешней) и короткой (внутренней) головки.

Одно из самых эффективных упражнений тренажерном зале для наращивания больших и сильных рук — подъем штанги на бицепс стоя (с прямым грифом).

Упражнение для развития бицепсов

Трицепс

Трицепс выполняет функцию разгибания руки, состоит из 3-ех основных пучков: внутренний, медиальный и латеральный.

Лучшее упражнения для накачки массы (объема) трицепса – жим штанги лежа узким хватом на горизонтальной скамье и отжимания на брусьях.

Базовое упражнение для развития трицепса

Предплечья

Предплечье отвечает за движение пальцами рук, вращает кисть и сжимает руку в кулак.

Чем сильнее предплечье, тем больший вес атлет сможет поднять в отдельном упражнении, когда нагрузка идет на соответствующие мышцы, например, в становой тяге, а также с помощью крепкого хвата можно провисеть долго в висе на турнике, что значительно облегчит процесс подтягиваний.

Лучшего упражнения для увеличения силы предплечья нету, так как их надо тренировать комплексно, в разных направлениях и под разными углами (как делают армрестлеры), что касается объема предплечья, то лидирующую позицию занимает упражнение сгибание и разгибания рук в запястьях.

Упражнение для развития мощных трицепсов

Ягодичные мышцы

Ягодицы — одни из самых крупных мышц в теле, участвуют в наклоне и выпрямление туловища, а также отвечает за поворот бедра вовнутрь и наружу.

Состоит из малой, средней и большой ягодичной мышцы.

Лучшее упражнение для накачки упругих ягодиц – глубокие приседания со штангой на плечах.

Базовое упражнение для ягодичных мышц

Бицепс бедра

Бицепс бедра учувствует во вращении и сгибании голени, а также в разгибании бедра и совместно с большой ягодичной мышцей туловища.

Двуглавая мышца бедра, состоит из двух головок – длиной и короткой.

Рекомендуется сначала накачать грубую мышечную массу ног, а потом уже оттачивать рельеф бицепса бедра, например, изолированным упражнением — сгибания ног лежа в тренажере.

Изолированное упражнения для бицепса бедра

Квадрицепс

Квадрицепс состоит из 4-ех головок — прямой, медиально широкой, латерально широкой, и промежуточно широкой мышцы бедра, поэтому его называют четырехглавым.

Четырехглавая мышца участвует в разгибании голени в коленном суставе и сгибании бедра.

Все тоже самое, как и с бицепсом бедра — сначала вы накачиваете грубую мышечную массу ног путем приседания со штангой на плечах, а потом начинайте оттачивать ее.

Лучшее изолирующее упражнение для накачки больших квадрицепсов считается разгибание ног в тренажере.

Эффективное упражнение для рельефа квадрицепса

Икры

Икроножная мышца самая выносливая в нашем теле, отвечает за сгибания и разгибания ступни, а также для стабилизации тела при ходьбе и беге.

Увеличить ее в размере достаточно сложно, потому что наше тело сделало ее анатомически выносливой. А как вы знаете выносливые мышцы, не славятся своими объемами, поэтому, чтобы увеличить икроножные мышцы, необходимо нагружать их тяжелыми весами, шокировать их нагрузкой, только так можно стимулировать мышечный рост голени.

Подберите рабочий вес на тренажере в диапазоне 15-20 повторений в 3-4 подходах, так чтобы последние повторения было сложно выполнять.

Лучшее упражнение для накачки икр – подъем на носки сидя а тренажере.

Упражнение для икроножных мышц

Приведенные упражнения на скелетные мышцы, одни из самых эффективных в своем роде, поэтому они должны обязательно включаться в вашу тренировочную программу по бодибилдингу.

Чем больше мышечная группа, тем больше надо времени нужно для восстановления ее после тренинга. Именно поэтому, мы настоятельно рекомендуем вам тренироваться по циклическому методу, при стремлении прогрессировать в тяжелых базовых упражнениях (становая тяга, приседания со штангой, жим штанги лежа), то есть использовать легкий, средний и тяжелый тренинг, либо выстроить тренировки по сплит-системе (подходит для продвинутых атлетов).

Количество повторений в упражнениях на массу, должно быть в диапазоне 6-12, в 3-4 подходах, с перерывом 2-2. 5 минуты. Если ваша цель увеличить силовые показатели, то количество повторений снижайте до 2-4, а время отдыха между подходами увеличиваете до 3-5 минут.

Ясное представление и понимание, тренировочного процесса, принесет вам наилучшие результаты в культуризме, ваши тренировки будут проходить более эффективно и безопасно.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Мышцы ног и ягодиц. Анатомия.

Мышцы ног и ягодиц в бодибилдинге имеют не меньшее значение, чем мышцы груди или бицепс. Считается, что не тренируя мышцы ног невозможно накачать руки. Мышцы ягодиц создают впечатление подтянутости и упругости. Конечно, мышцы ног и ягодиц участвуют во многих базовых упражнениях, таких как становая тяга или приседания, и поэтому укрепление их обязательно. Сегодня мы поговорим об анатомии этих мышц.

Нога человека состоит из двух частей — верхней и нижней. Верхняя часть это бедро, нижняя — это голень. Бедро имеет в своем строении только одну кость — бедренную, а голень имеет две кости — большую берцовую (со стороны большого пальца) и малую берцовую (со стороны мизинца). Между бедром и голенью находится коленный сустав, который представляет из себя простой шарнир и может совершать два движения — разгибание и сгибание. Если согнуть ногу в колене, то голень отклонится к задней поверхности бедра, а если разогнуть, то нога выпрямляется. Верхняя часть бедренной кости соединяется с тазовой костью в тазобедренном суставе, который представляет собой шаровой шарнир. Тазобедренный сустав может совершать шесть движений: разгибание, сгибание, сведение, разведение, поворот наружу и внутрь. Нижнюю часть большой и малой берцовых костей с таранной костью стопы соединяет голеностопный сустав.

Четырехглавая мышца бедра (Квадрицепс).

Расположена в передней  части бедра. Имеет 4 головки:

  • Прямая мышца бедра (начинается от передней части таза)
  • Медиальная широкая мышца бедра (проходит по внутренней стороне бедра)
  • Латеральная мышца бедра (проходит по наружной стороне бедра)
  • Промежуточная широкая мышца бедра (проходит под прямой мышцей)

Все эти четыре головки сходятся вместе в нижней части и крепятся к коленной чашечке и к берцовой кости (общим сухожилием).

Четырехглавая мышца бедра разгибает ногу в коленном суставе, а прямая мышца бедра сгибает ногу в тазобедренном суставе.

Задняя группа мышц бедра.

Расположена в задней части бедра и состоит из таких мышц:

  • Двуглавая мышца бедра (расположена на наружной стороне бедра, прикрепляется к малой берцовой кости под коленом)
  • Полусухожильная мышца (располагается по внутренней стороне бедра, крепится к большой берцовой кости около полуперепончатой мышцы)
  • Полуперепончатая мышца (проходит по внутренней стороне бедра и прикреплена к верху большой берцовой кости под коленом)

Эти мышцы сгибают ногу в коленном суставе и разгибают в тазобедренном.

Есть еще другие мышцы бедра:

  • Приводящие
  • Отводящие
  • Сгибатели бедра
Ягодичные мышцы.

Большая ягодичная мышца с одной стороны крепится к тазовой кости, а с другой — к верхней части бедренной кости. Мышца очень мощная и служит для разгибания ноги в тазобедренном суставе. Для того, чтобы накачать ягодичные мышцы полезно выполнять приседания, становую тягу, выпады.

Мышцы голени.

Самыми крупными мышцами голени являются:

  • Икроножная мышца. Две ее головки (латеральная и медиальная) начинаются над коленом, на задней поверхности бедренной кости.
  • Камбаловидная мышца. Находится под икроножной мышцей.

Сухожилия этих двух мышц соединяются в ахиллово сухожилие, которое прикрепляется к пяточной кости, огибая голеностопный сустав. Мышцы голени работают при разгибании ноги в голеностопе, а икроножная мышца еще и участвует в сгибании колена.

К мышцам голени еще относятся:

  • Мышцы, которые разгибают ногу в голеностопе
  • Мышцы, которые сгибают ногу в голеностопе
  • Мышцы, которые поворачивают стопу наружу
  • Мышцы, сгибающие и разгибающие пальцы

Вот такие мышцы ног и ягодиц есть у человека. Урок анатомии заканчивается и самое время переходить к упражнениям.

Статьи по теме

на Ваш сайт.

Строение ноги человека. Строение человеческой ноги. Мышцы ног

Строение наших ног.

Человеческий скелет составляет приблизительно восемнадцать процентов массы человека и насчитывает в себе более чем двести костей. Кости таза, которые образуют вертлюжную впадину, дают опору нижним конечностям и поддерживают туловище.

В вертлюжную впадину входит, а также свободно вращается головка бедренной кости, которая способна выдержать огромные нагрузки.
С бедренной костью соединяется чашечка коленного сустава, не соединяющаяся с костями голени. Это обеспечивает подвижное и прочное соединение с нижней частью ноги.

Коленный сустав — самый сложный сустав организма человека.
Голень состоит из большой и малой берцовых костей. Их головки сочленяются в голеностопном суставе со стопой ноги. Так как на голеностопный сустав приходится наибольшая нагрузка при беге и ходьбе, то он наиболее подвержен травмам.

Стопа состоит из двадцати шести костей, которые подразделяются на фаланги пальцев, кости плюсны и кости предплюсны. Кости стопы образуют два продольных подошвенных свода, которые выполняют рессорную функцию и благодаря чему ноги пружинят при ходьбе.
При сильно опущенном подошвенном своде развивается плоскостопие.

В суставах закругленный конец одной кости входит в ямку или углубление на другой. Каждый сустав окружен мягкой и плотной суставной сумкой, которая переходит с одной кости на другую и охватывает сустав со всех сторон.
Концы костей покрывает эластичный гладкий хрящ, облегчающий движение и обеспечивающий упругость сустава.

Внутренняя поверхность суставной сумки выделяет синовиальную жидкость, которая не позволяет стираться костной ткани. При недостаточном количестве этой жидкости в суставе наступает малоподвижность сустава и возможно развитие остеоартрита, при котором сустав теряет подвижность.

Снаружи сумки, иногда и внутри, сустав укреплен связками, которые состоят из прочной соединительной ткани. Связки, при сильном перенапряжении могут порваться. Восстановление порванных связок иногда требует времени больше, чем сращивание сломанной кости.

Мышцы ноги.

В человеческом теле насчитывается до 500 мышц. Каждая мышца состоит как бы из двух частей: одна — мясистая и красная, это и есть сама мышца, а вторая — блестящая, серебристо — белого цвета, это — сухожилие.

Мышца крепится к кости с помощью сухожилия. Она покрывает собой кость и придает телу красивые и округленные формы. Для обеспечения различных движений, мышцы ноги работают взаимно противоположными группами.

Для вытягивания бедра назад при беге или ходьбе предназначается большая ягодичная мышца. Четырехглавая мышца сгибает голень. Портняжная мышца позволяет вращать голень внутрь, а бедро — наружу.

Двуглавая мышца бедра позволяет сгибать ногу в колене, подворачивать ее наружу и отводить от туловища. Передняя большеберцовая мышца помогает поднимать стопу и разгибать подошву. Икроножная мышца — поднимает пятку. Ахиллесово сухожилие прикрепляет икроножную мышцу к костям пятки.
Стопа состоит из одиннадцати маленьких мышц, которые помогают сгибать и разгибать пальцы, поднимать стопу от поверхности и передвигаться.

Мышцы ног управляются нервной системой, обеспечивающей согласованность их действий. Если мышцы находятся без работы, то со временем они атрофируются, а если работают без отдыха, то наступает их утомление. Работоспособность мышц восстанавливается после отдыха.

В первую очередь утомление связано с процессами, которые происходят в нервной системе. Кроме этого, накопленные в мышцах продукты обмена веществ также способствуют утомлению мышц. В период отдыха кровь уносит эти вещества и восстанавливает работоспособность нервных клеток центральной нервной системы.
Постоянные физические нагрузки ведут к увеличению объема мышц, возрастанию их силы и работоспособности.

Читайте также:

Как сделать ноги стройнее всего за 5 минут
Грациозная походка
Какие ноги считаются идеальными или секреты красоты женских ног
Круропластика для создания идеальных ножек
О чем расскажут наши ноги

Главная — Идеальные ножки — Строение наших ног

схема. Фото с описанием мышц

Спортсмену и просто взрослому человеку занимающемуся фитнесом все-таки желательно знать о строении мышц и какие функции они выполняют. Для этого приведена схема строения мышц человека ниже. А также фото с описанием крупных мышц человека.

Строение мышц человека — схема

 

Рис. 1. Мышцы человека (вид спереди): 1 — лобное брюшко затылочно-лобной мышцы; 2 — круговая мышца рта; 3 — подбородочная; 4 — грудино-подъязычная; 5 — трапециевидная; 6 — трехглавая плеча; 7 — прямая живота; 8 — наружная косая живота; 9 — лучевой сгибатель кисти; 10 — натягивающая широкую фасцию бедра; 11 — подвздошно-поясничная; 12— гребешковая, 13 — длинная приводящая; 14 — портняжная; 15 —прямая бедра; 16 — нежная; 17 — внутренняя широкая; 18 — отводящая большой палец; 19 — сухожилия длинной мышцы, разгибающей пальцы; 20 — длинная мышца, разгибающая пальцы; 21 — камбаловидная; 22 — передняя большеберцовая; 23 — икроножная; 24 — наружная широкая; 25 — короткая мышца, разгибающая большой палец; 26 — длинная мышца, отводящая большой палец; 27 — локтевой разгибатель кисти; 28 — короткий лучевой разгибатель кисти; 29 — разгибатель пальцев; 30 — длинный лучевой разгибатель кисти; 31 — плечелучевая; 32 — трехглавая плеча; 33 — передняя зубчатая; 34 — двуглавая плеча; 35 — большая грудная; 36 — дельтовидная; 37 — передняя лестничная; 38 — средняя лестничная; 39 — грудино-ключично-сосковая; 40 — опускающая угол рта; 41 — жевательная; 42 — большая скуловая; 43 — височная.

Рис. 2. Мышцы человека (вид сзади): 1 — затылочное брюшко затылочно-лобной мышцы; 2— трапециевидная; 3 — дельтовидная; 4 — трехглавая плеча; 5 — двуглавая плеча: 6 — круглый пронатор; 7 и 23 — плечелучевая; 8 — лучевой сгибатель кисти; 9 — длинная ладонная; 10 — локтевой сгибатель кисти; 11 — поверхностный сгибатель пальцев; 12 и 13 — полуперепончатая; 13 — полусухожильная; 14 — нежная; 15 — двуглавая бедра; 17 — икроножная; 18 — камбаловидная; 19 — большая ягодичная; 20 — короткая мышца, отводящая большой палец; 21 — средняя ягодичная; 22 — наружная косая живота; 24 —широчайшая спины; 25 — передняя зубчатая; 26 — большая круглая; 27 — малая круглая; 28 — полостная; 29 — грудино-ключично-сосковая; 30 — ременная головы; 31 — жевательная; 32 — полуостистая головы; 33 — височная.

Мышцы человека: фото с описанием

Давайте кратко разберём крупные мышцы, а чтобы было понятнее строение мышечной системы человека приведены названия мышц человека в картинках.

Верхний плечевой пояс

Двуглавая мышца плеча (бицепс) — сгибание плеча (в локтевом суставе)

Трёхглавая мышца плеча (трицепс) — учавствует в разгибании плеча

Дельтовидная мышца плеча — выполняет функцию сгибания и разгибания плеча, а также отведение плеча

Большая грудная мышца — выполняет функцию приведения плеча и вращения его внутрь

 

Мышцы нижних конечностей

Двуглавая мышца бедра — выполняет следующие функции: вращение голени наружу, разгибание бедра, сгибание голени в коленном суставе. При укреплённой голени разгибают туловище совместно с большими ягодичными мышцами.

Большая ягодичная мышца — разгибает и поворачивает бедро кнаруже. Выпрямляет и фиксирует туловище.

Четырехглавая мышца бедра — разгибание в коленном суставе.

\

Икроножные мышцы —  работа стопы и стабилизация тела при ходьбе, беге, прыжках.

Мышци живота

Наружняя косая мышца живота, поперечная мышца живота, внутрення косая мышца живота и прямая мышца живота — образуя плотный мышечный каркас выполняют функцию пддержания внуренних органов. Сгибание позвоночного столба и наклон туловища вправо-влево, скручивания.

Мышцы спины

Широчайшая мышца спины — функции: приведение плеча к туловищу, пронация. Также расширяет грудную клетку (работает как вспомогательная дыхательным мышцам).

Трапецевидная мышца — функции: поднятие или опускание лопатки, И приближение лопатки к позвоночному столбу.

 

Мышцы голени (задняя группа) человека

Задняя группа мышц голени.

Поверхностный слой (мышцы икры):

М. triceps surae, трехглавая мышца голени, образует главную массу возвышения икры. Она состоит из двух мышц — m. gastrocnemius, расположенной поверхностно, и m. soleus, лежащей под ней; обе мышцы внизу имеют одно общее сухожилие.

  • М. gastrocnemius, икроножная мышца, начинается от facies poplitea бедренной кости сзади над обоими мыщелками двумя головками, которые своим сухожильным началом срастаются с капсулой коленного сустава. Головки переходят в сухожилие, которое, слившись с сухожилием m. soleus, продолжается в массивное ахиллово сухожилие, tendo calcaneus (Achillis), прикрепляющееся к задней поверхности бугра пяточной кости. У места прикрепления между сухожилием и костью заложена весьма постоянная синовиальная сумка, bursa tendinis calcanei (Achillis).
  • M. soleus, камбаловидная мышца, толстая и мясистая. Лежит под икроножной мышцей, занимая большое протяжение на костях голени. Линия ее начала находится на головке и на верхней трети задней поверхности малоберцовой кости и спускается по большеберцовой кости почти до границы средней трети голени с нижней. В том, месте, где мышца перекидывается от малоберцовой кости к большеберцовой, образуется сухожильная дуга, arcus tendineus m. solei, под которую подходят подколенная артерия и n. tibialis. Сухожильное растяжение m. soleus сливается с ахилловым сухожилием.

М. plantaris, подошвенная мышца. Берет начало от facies poplitea над латеральным мыщелком бедра и от капсулы коленного сустава, вскоре переходит в очень длинное и тонкое сухожилие, которое тянется спереди m. gastrocnemius и прикрепляется у пяточного бугра. Эта мышца претерпевает редукцию и у человека является рудиментарным образованием, вследствие чего может отсутствовать. Функция. Вся мускулатура m. triceps surae (включая и m. plantaris) производит сгибание в голеностопном суставе как при свободной ноге, так и при опоре на конец стопы. Так как линия тяги мышцы проходит медиально к оси подтаранного сустава, то она делает еще приведение стопы и супинацию. При стоянии triceps surae (в особенности m. soleus) препятствует опрокидыванию тела кпереди в голеностопном суставе. Мышце приходится работать преимущественно при отягощении массой всего тела, а потому она отличается силой и имеет большой физиологический поперечник; m. gastrocnemius как двусуставная мышца может также сгибать колено при укрепленной голени и стопе. (Инн. m. triceps surae и m. plantaris – L5-S2. N. tibialis.) Глубокий слой, отделенный от поверхностного глубокой фасцией голени, слагается из трех сгибателей, которые противостоят трем соименным разгибателям, лежащим на передней поверхности голени.

М. flexor digitorum longus, длинный сгибатель пальцев, самая медиальная из мышц глубокого слоя. Лежит на задней поверхности большеберцовой кости, от которой берет свое начало. Сухожилие мышцы спускается позади медиальной лодыжки, на середине подошвы разделяется на четыре вторичных сухожилия, которые идут к четырем пальцам II-V, прободают наподобие глубокого сгибателя на кисти сухожилия m. flexor digitorum brevis и прикрепляются к дистальным фалангам. Функция в смысле сгибания пальцев невелика; мышца главным образом действует на стопу в целом, производя при свободной ноге сгибание и супинацию ее. Она также вместе с m. triceps surae участвует в постановке стопы на носок (хождение на цыпочках). При стоянии мышца активно содействует укреплению свода стопы в продольном направлении. При ходьбе прижимает пальцы к земле. (Инн. L5-S1. N. tibialis.)

М. tibialis posterior, задняя большеберцовая мышца, занимает пространство между костями голени, лежа на межкостной перепонке и отчасти на большеберцовой и малоберцовой костях. От этих мест мышца получает свои начальные волокна, затем своим сухожилием огибает медиальную лодыжку и, выйдя на подошву, прикрепляется к tuberositas ossis navicularis, а затем несколькими пучками — к трем клиновидным костям и основаниям II-IV плюсневых костей. Функция. Сгибает стопу и приводит ее совместно с m. tibialis anterior. Вместе с другими мышцами, прикрепляющимися тоже на медиальном крае стопы (m. tibialis anterior et m. peroneus longus), m. tibialis posterior образует как бы стремя, которое укрепляет свод стопы; протягиваясь своим сухожилием через lig. calcaneonavicular, мышца поддерживает вместе с этой связкой головку таранной кости. (Инн. L5-S1. N. tibialis.)

М. flexor hallucis longus, длинный сгибатель большого пальца стопы, самая латеральная из мышц глубокого слоя. Лежит на задней поверхности малоберцовой кости, от которой берет свое начало; сухожилие идет в бороздке на processus posterior таранной кости, подходит под sustentaculum tali к большому пальцу, где и прикрепляется к его дистальной фаланге. Функция. Сгибает большой палец, а также благодаря возможной связи с сухожилием m. flexor digitorum longus может действовать в этом же смысле на Пи даже III и IV пальцы. Подобно остальным задним мышцам голени, m. flexor hallucis longus производит сгибание, приведение и супинацию стопы и укрепляет свод стопи в переднезаднем! направлении. (Инн. L5-S2. N. tibialis.)

Мышцы нижней конечности

Мышцы, вызывающие движения в тазобедренном суставе

Четыре основные группы мышц бедра — это ягодичные, приводящие, подвздошно-поясничные мышцы и латеральный ротатор, определяемые типом движения, которое они опосредуют.

Цели обучения

Различать мышцы, участвующие в движении тазобедренного сустава

Основные выводы

Ключевые моменты
  • Большая ягодичная мышца разгибает бедро, в то время как средняя и минимальная ягодичные мышцы участвуют в вращении и отведении бедра (перемещение бедра от средней линии).
  • Группа приводящих мышц (короткая приводящая мышца, длинная и большая мышца, а также петинеус и тонкая мышца) перемещает бедренную кость по направлению к средней линии из отведенного положения.
  • Подвздошно-поясничная группа мышц (подвздошная и большая поясничная мышца) отвечает за сгибание бедра.
  • Группа латеральных вращающих мышц (наружная и внутренняя запирательные, грушевидная, верхняя и нижняя гемелли и квадратная мышца бедра) поворачивает переднюю поверхность бедренной кости наружу. Этому движению помогают большая ягодичная мышца и большая приводящая мышца.
Ключевые термины
  • Группа приводящих мышц : Короткая приводящая мышца, длинная приводящая мышца, большая приводящая мышца, пектинус и тонкая мышца.
  • латеральная группа ротаторов : внешняя и внутренняя запирательные мышцы, грушевидная мышца, верхняя и нижняя гемелли и квадратная мышца бедра.
  • Ягодичная группа : Большая ягодичная мышца, средняя ягодичная мышца, малая ягодичная мышца и растягивающая широкая фасция.
  • Подвздошно-поясничная группа : Подвздошная и большая поясничная мышца.

В анатомии человека мышцы тазобедренного сустава — это те мышцы, которые вызывают движение в бедре. Мышцы тазобедренного сустава делятся на четыре группы в зависимости от их ориентации и функции. Движение в тазобедренном суставе аналогично движению в плечевом суставе, но из-за повышенных требований к весу диапазон возможных движений сокращается.

Ягодичная группа

Ключевые мышцы бедра : Вверху видна большая ягодичная мышца, срезанная, чтобы обнажить нижележащие мышцы.

Мышцы ягодичной группы расположены поверхностно и в основном отводят и разгибают бедро у бедра.

  • Gluteus Maximus : Большая ягодичная мышца является самой большой из ягодичных мышц и придает структуру ягодицам.
    • Прикрепления: берет начало в задней части таза и копчике (копчике) и прикрепляется к бедренной кости.
    • Действия: Разгибает бедро и помогает вращению. Используется только тогда, когда требуется создание силы (например,г. при лазании).
  • Средняя ягодичная мышца : веерообразная средняя ягодичная мышца расположена между большой и малой ягодичными мышцами и выполняет ту же функцию, что и минимальная ягодичная мышца.
    • Прикрепления: берет начало в задней части таза и прикрепляется к бедренной кости.
    • Действия: Отводит бедро, вращает кнутри и фиксирует таз во время ходьбы.
  • Минимальная ягодичная мышца : Минимальная ягодичная мышца является самой глубокой и самой маленькой из поверхностных ягодичных мышц и выполняет те же функции, что и средняя ягодичная мышца.
    • Насадки: берет начало в тазу и прикрепляется к бедренной кости.
    • Действия: Отводит бедро, вращает кнутри и фиксирует таз во время ходьбы.

Группа боковых ротаторов

Мышцы группы боковых вращателей расположены глубоко и, как следует из названия, действуют, чтобы поворачивать бедро в боковом направлении. Все мышцы группы боковых ротаторов берут начало от таза и прикрепляются к бедренной кости.

  • Грушевидная мышца : Грушевидная мышца является самой верхней из мышц латеральной вращательной группы.
    • Действия: Боковое вращение и отведение бедра в тазобедренном суставе.
  • Внутренний обтуратор : Внутренний обтуратор выстилает внутреннюю стенку таза.
    • Действия: Боковое вращение и отведение бедра в тазобедренном суставе.
  • Gemelli : Gemelli — это две (верхняя и нижняя) узкие и треугольные мышцы, разделенные сухожилием внутренней запирательной мышцы.
    • Действия: Боковое вращение и отведение бедра в тазобедренном суставе.
  • Quadratus Femoris : quadratus femoris — плоская мышца квадратной формы (фактически состоящая из четырех отдельных мышц). Это самая нижняя из мышц латеральной группы ротаторов, расположенная ниже гемелли и внутренней запирательной мышцы.
    • Действия: Боковое вращение бедра в тазобедренном суставе также играет важную роль в разгибании голени в коленях.

Группа приводящих мышц

(a) Мышцы приводящей группы и (b) Ключевые мышцы, связанные с движением в бедре: Глубоко расположенные мышцы приводящей группы берут начало от лобка и прикрепляются к длине бедренной кости.Подвздошная и большая поясничная мышца составляют группу подвздошно-поясничной мышцы и видны в области таза и нижней части позвоночника.

Пять мышц приводящей группы отвечают за приведение бедра, хотя некоторые из них имеют дополнительные функции.

  • Длинная приводящая мышца : Длинная приводящая мышца — это большая плоская мышца, покрывающая большую и короткую приводящую мышцу.
    • Прикрепления: берет начало от лобка и широко прикрепляется к бедренной кости.
    • Действия: Приведение и вращение бедра кнутри.
  • Большая приводящая мышца : Большая приводящая мышца — самая большая и самая задняя из мышц приводящей группы.
    • Насадки: берет начало от лобка и прикрепляется к бедренной кости.
    • Действия: Приводит, сгибает и разгибает бедро.
  • Adductor Brevis : Короткая приводящая мышца — это короткая мышца, лежащая под длинной приводящей мышцей.
    • Насадки: берет начало от лобка и прикрепляется к бедренной кости.
    • Действия: Приведение бедра.
  • Externus Obturator : Это одна из самых маленьких мышц медиальной части бедра, расположенная наиболее высоко.
    • Насадки: берет начало от лобка и прикрепляется к бедренной кости.
    • Действия: Боковое вращение бедра.
  • Gracilis : gracilis — самая поверхностная и медиальная из мышц приводящей группы. Пересекая тазобедренный и коленный суставы, он может вызывать движение как в тазобедренном, так и в коленном суставах.
    • Насадки: берет начало от лобка и прикрепляется к большеберцовой кости.
    • Действия: Приведение бедра к бедру и сгибание бедра в колене.

Другие мышцы

Есть несколько других мышц, которые вызывают движение вокруг тазобедренного сустава.

  • Большая поясничная мышца : Большая поясничная мышца расположена глубоко в спине, рядом со средней линией, непосредственно прилегающей к позвоночнику. Подвздошная и большая поясничная мышца составляют группу подвздошно-поясничной мышцы.
    • Прикрепления: берет начало от основания позвоночника, соединяется с подвздошной костью для прикрепления к бедренной кости.
    • Действия: Сгибание бедра в тазобедренном суставе.
  • Подвздошная мышца : подвздошная мышца — это большая веерообразная мышца, выстилающая внутреннюю часть таза. Подвздошная и большая поясничная мышца составляют группу подвздошно-поясничной мышцы.
    • Прикрепления: берет начало от таза и основания позвоночника, соединяется с большой поясничной мышцей и прикрепляется к бедренной кости.
    • Действия: Сгибание бедра в тазобедренном суставе.
  • Sartorius : портняжная мышца — это длинная тонкая мышца бедра, самая длинная мышца тела.
    • Насадки: берет начало от таза и прикрепляется к большеберцовой кости.
    • Действия: Сгибание, отведение и вращение бедра в тазобедренном суставе.
  • Pectineus : Грудная мышца — это большая плоская мышца бедра.
    • Насадки: берет начало в тазу и прикрепляется к бедренной кости.
    • Действия: Приведение и сгибание бедра в тазобедренном суставе.
  • Двуглавая мышца бедра : Мышца, аналогичная двуглавой мышце плеча, также двуглавой. Две синергические мышцы связаны с двуглавой мышцей бедра, полусухожильной и полуперепончатой.
    • Прикрепления: берет начало от таза и бедра и прикрепляется к малоберцовой кости.
    • Действия: Разгибается и поворачивается в сторону бедра. Основное действие — сгибание голени в коленях.

Ключевые движения

  • Разгибание (приведение бедра за корпус) Производится большой ягодичной мышцей, большой приводящей мышцей и двуглавой мышцей бедра. Сгибание (распространение бедра на переднюю часть тела): производится тонкой мышцей, большой поясничной мышцей, подвздошной и грудной мышцами.
  • Отведение (смещение бедра в сторону от таза): Производится за счет средней и малой ягодичных мышц, наружной запирательной мышцы, gemelli и портняжной мышцы.
  • Приведение (возвращение бедра к средней линии): Производится приводящей группой мышц.
  • Вращение (вращение бедра вокруг тазобедренного сустава): Производится группой латеральных вращающих мышц и двуглавой мышцы бедра, портняжной, а также средней и малой ягодичных мышц.

Мышцы, вызывающие движения в коленном суставе

Три набора мышц (подколенная мышца, четырехглавая мышца и подколенные сухожилия) обеспечивают движение, равновесие и стабильность в коленном суставе.

Цели обучения

Различают мышцы, которые позволяют коленному суставу двигаться

Основные выводы

Ключевые моменты
  • При полном разгибании большеберцовая и бедренная кость «фиксируются» в нужном положении, обеспечивая устойчивость ноги и улучшая несущую способность.Подколенная мышца в задней части ноги разблокирует колено, вращая бедро на большеберцовой кости, позволяя сгибать сустав.
  • Группа четырехглавой мышцы бедра (прямая мышца бедра, латеральная широкая мышца бедра, средняя широкая мышца бедра и средняя широкая мышца бедра) пересекает колено через надколенник и действует для разгибания ноги.
  • Мышцы группы подколенного сухожилия (полусухожильная, полуперепончатая и двуглавая бедра) сгибают колено и разгибают бедро.
Ключевые термины
  • группа подколенного сухожилия : группа из трех мышц в задней части бедра, отвечающая за сгибание голени в колене.
  • quadriceps femoris : Группа из четырех мышц в передней части бедра, отвечающая за разгибание голени до колена.
  • popliteus : Мышцы, расположенные за коленом, «разблокируют» полностью разогнутый коленный сустав, позволяя сгибаться.

Коленный сустав позволяет движение голени относительно бедра через коленный сустав. Коленный сустав на самом деле состоит из двух суставов: бедренно-большеберцового сустава между бедренной и большеберцовой костью, который является опорным коленным суставом, и пателлофеморального сустава, который соединяет надколенник (коленную чашечку) с бедренной костью.

Бедренно-большеберцовый сустав относительно слаб и легко повреждается, поэтому для обеспечения устойчивости он полагается на мышцы и связки. Когда колено полностью выпрямлено, бедро слегка поворачивается на большеберцовой кости, чтобы зафиксировать сустав на месте, обеспечивая эффективную нагрузку.

Надколенник является точкой прикрепления четырехглавой мышцы бедра и прикрепляется связкой к большеберцовой кости. Это увеличивает нагрузку на четырехглавую мышцу бедра, тем самым повышая ее эффективность при разгибании голени.Коленная чашечка дополнительно защищает коленный сустав от повреждений.

Пателлофеморальный сустав выполняет две ключевые функции: увеличивает нагрузку на сухожилие четырехглавой мышцы для улучшения стабильности мышц и защищает коленный сустав от повреждений.

Мышцы, генерирующие движение в колене, в основном расположены в бедре и могут быть разделены на передний и задний отделы. Подколенная мышца, расположенная в голени, отвечает за «разблокировку» коленного сустава после разгибания.

Передние мышцы бедра

(a) Задние мышцы бедра и (b) задняя область голени: Двуглавая мышца бедра, синергетическая полусухожильная и полуперепончатая мышцы отвечают за сгибание голени в колене.Вид сзади мышц голени, вверху видна подколенная мышца, расположенная за коленом.

В передней части бедра четыре мышцы. Грудная и подвздошно-поясничная мышцы отвечают за движения в бедре и обсуждаются в другом месте.

  • Sartorius : портняжная мышца, тонкая мышца бедра, самая длинная мышца тела.
    • Насадки: берет начало от таза и прикрепляется к большеберцовой кости.
    • Действия: Сгибание голени в коленном суставе.
  • Quadriceps Femoris : Quadriceps femoris на самом деле состоит из четырех мышц, составляющих переднюю часть бедра: трех глубоко лежащих мышц бедра (латеральной, средней и медиальной) и покрывающей их прямой мышцы бедра. Все четыре мышцы являются ключевыми разгибателями голени в коленном суставе, а также стабилизируют и защищают надколенник.
    • Прикрепления: латеральная, промежуточная и медиальная широкая мышца бедра берут начало от бедренной кости и прикрепляются к надколеннику.Прямая мышца бедра берет начало от таза и прикрепляется к надколеннику.
    • Действия: Разгибает голень в коленном суставе и стабилизирует надколенник. Прямая мышца бедра дополнительно облегчает вращение в бедре.

Задние мышцы бедра

В задней части бедра расположены три мышцы: двуглавая мышца бедра и две синергические мышцы (полусухожильная и полуперепончатая). Эти мышцы иногда называют группой подколенного сухожилия.Задний отдел бедра имеет сходство с передним отделом плеча как по структуре, так и по функциям.

  • Двуглавая мышца бедра : Мышца, аналогичная двуглавой мышце плеча в верхней части руки, а также двуглавая. Две синергические мышцы связаны с двуглавой мышцей бедра, полусухожильной и полуперепончатой.
    • Прикрепления: берет начало от таза и бедра и прикрепляется к малоберцовой кости.
    • Действия: Разгибается и вращается в стороны в бедре, основное действие — сгибание голени в коленях.

Другие мышцы

  • Подколенный сустав : Подколенный сустав расположен за коленным суставом и действует, чтобы «разблокировать» колено, вращая бедренную кость на большеберцовой кости, позволяя сгибать голень.
    • Прикрепления: берет начало в задней части большеберцовой кости и прикрепляется к бедренной кости.
    • Действия: Боковой поворот бедра на большеберцовой кости, «разблокируя» коленный сустав, чтобы можно было сгибать.

Ключевые движения

  • Расширение: Производится группой мышц портняжной и четырехглавой мышцы бедра.
  • Сгибание: Производится двуглавой, полусухожильной и полуперепончатой ​​мышцами. Подколенная мышца облегчает это движение, отпирая полностью разогнутый коленный сустав.
  • Вращение: Коленный сустав допускает небольшое вращение при сгибании, которое создается двуглавой мышью бедра, полусухожильной, полуперепончатой, тонкой и портняжной мышцами.

Мышцы, вызывающие движения в голеностопном суставе

Мышцы голени вставляются в кости голеностопного сустава и стопы для облегчения движения голеностопного сустава.

Цели обучения

Опишите мышцы, вызывающие движение голеностопного сустава

Основные выводы

Ключевые моменты
  • Голеностопный сустав состоит из двух суставов, которые обеспечивают тыльное сгибание, подошвенное сгибание, инверсию и выворот стопы.
  • Крепкие связки удерживают голеностопный сустав на месте, хотя он подвержен повреждениям.
  • Мышцы, контролирующие движение в голеностопном суставе, находятся в ноге и могут быть разделены на переднюю, заднюю и боковую части.
Ключевые термины
  • подошвенное сгибание : Движение стопы вниз от голени.
  • выворот : Наклон ступни таким образом, чтобы подошва смотрела в сторону от средней линии.
  • инверсия : Наклон ступни так, чтобы подошва была обращена к средней линии.
  • тыльное сгибание : Движение стопы вверх по направлению к голени.

Движение в голеностопном суставе контролируется двумя суставами. Голеностопный или голеностопный сустав образуется из большеберцовой и малоберцовой костей голени и таранной кости стопы.Функционально он действует как шарнир, обеспечивая тыльное сгибание (подтягивание стопы вверх к голени) и подошвенное сгибание (оттягивание стопы вниз от голени). Эверсия (наклон подошвы стопы от средней линии) и инверсия (наклон подошвы стопы внутрь к средней линии) контролируются подтаранным суставом, образованным между таранной и пяточной костями стопы.

Голеностопный сустав удерживается на месте многочисленными прочными связками, которые можно легко повредить при приложении чрезмерной силы к голеностопному суставу, особенно во время напряженного выворачивания и выворота.Движение в голеностопном суставе является ключевым для поддержания осанки и равновесия, но наиболее важно для передвижения. Изменения в активации мышц могут контролировать движение голеностопного сустава, позволяя ступне создавать постепенное усилие.

Мышцы, генерирующие движение в голеностопном суставе, обычно находятся в голени и могут быть разделены на три категории.

Передний отсек

(a) Передний отдел ноги и (b) Задний отдел ноги: Вид ноги спереди, демонстрирующий мышцы и сухожилия, участвующие в движении голеностопного сустава.: Задний вид ноги, показывающий мышцы и сухожилия, участвующие в движении голеностопного сустава.

Три мышцы в переднем отделе голени действуют на тыльное сгибание и переворачивают стопу в голеностопном суставе.

  • Передняя большеберцовая мышца : Передняя большеберцовая мышца расположена рядом с боковой поверхностью большеберцовой кости и является самым сильным тыльным сгибателем стопы.
    • Насадки: берут начало на боковой поверхности большеберцовой кости и прикрепляются к основанию большого пальца ноги.
    • Действия: Тыльное сгибание и инверсия стопы.
  • Extensor Digitorum Longus : Длинный разгибатель пальцев — это глубоко расположенная внешняя мышца, которая проходит по длине большеберцовой кости.
    • Прикрепления: берет начало от большеберцовой кости и переходит в сухожилие, переходит в стопу, разделяется на четыре части и прикрепляется к пальцам ноги.
    • Действия: Разгибание пальцев стопы и тыльное сгибание стопы.
  • Extensor Hallucis Longus : Длинный разгибатель большого пальца — это глубоко расположенная внешняя мышца под длинным разгибателем пальцев.
    • Прикрепления: берет начало от малоберцовой кости и прикрепляется к большому пальцу ноги.
    • Действия: Разгибание большого пальца стопы и тыльное сгибание стопы.

Задний отсек

Несколько мышц расположены в заднем отделе ноги, обычно сгруппированы в поверхностные и базальные группы. Большинство этих мышц работают на подошвенное сгибание стопы в голеностопном суставе.

Поверхностные мышцы

Поверхностные мышцы определяют характерную форму голени.

  • Gastrocnemius : икроножная мышца, двуглавая мышца, самая поверхностная из мышц заднего отдела.
    • Прикрепления: Обе головки берут начало от бедренной кости. Волокна сходятся, образуя пяточное сухожилие, которое прикрепляется к пятке.
    • Действия: Подошвенное сгибание стопы, также может сгибать голень в колене, но не является ключевым в этом движении.
  • Подошвенная мышца : Подошвенная мышца — это небольшая мышца, расположенная между икроножной и камбаловидной мышцами.Его нет у 10% людей.
    • Прикрепления: берет начало от бедренной кости и прикрепляется к пятке через пяточное сухожилие.
    • Действия: Подошвенное сгибание стопы, также может сгибать голень в колене, но не является ключевым в этом движении.
  • Soleus : камбаловидная мышца — это большая плоская мышца, которая является самой глубокой из поверхностных мышц.
    • Прикрепления: берет начало от большеберцовой и малоберцовой костей и прикрепляется к пятке через пяточное сухожилие.
    • Действия: Подошвенное сгибание стопы.
Глубокие мышцы
  • Задняя большеберцовая мышца : Задняя большеберцовая мышца — это самая глубокая из мышц заднего отдела.
    • Прикрепления: берет начало от большеберцовой и малоберцовой костей и прикрепляется к подошвенным поверхностям пальцев стопы.
    • Действия: Выворачивает и сгибает стопу, поддерживает свод стопы.

Боковое отделение

Две мышцы в боковом отделе контролируют выворот стопы.С физиологической точки зрения предпочтение отдается перевернутой стопе, поэтому эти мышцы также предотвращают чрезмерное перевертывание.

  • Fibularis Longus : Длинная малоберцовая мышца является более длинной и более поверхностной из двух мышц.
    • Вложения: происходит от малоберцовой и большеберцовой костей. Волокна сходятся в сухожилие, которое проходит под стопой и прикрепляется к внутренней стороне стопы.
    • Действия: Выворот и подошвенное сгибание стопы.
  • Fibularis Brevis : Короткая малоберцовая мышца является более глубокой и короткой из двух мышц.
    • Прикрепления: берет начало на боковой поверхности малоберцовой кости и прикрепляется к мизинцу пальца ноги.
    • Действия: Выворот стопы.

Ключевые движения

  • Выворот стопы (наклон подошвы стопы от средней линии): выполняется малоберцовой и длинной малоберцовой мышцами.
  • Инверсия стопы (наклон подошвы стопы внутрь по направлению к средней линии ) : Выполняется задней большеберцовой и передней большеберцовой мышцами.
  • Тыльное сгибание стопы (вытягивание стопы вверх по направлению к ноге): выполняется передней большеберцовой мышцей, длинным разгибателем большого пальца и длинным разгибателем пальцев.
  • Подошвенное сгибание стопы (вытягивание стопы вниз от голени): выполняется икроножной, подошвенной, камбаловидной и длинной малоберцовой мышцами.

Мышцы, вызывающие движения стопы

Движение стопы и пальцев ног требует работы многих мышц.

Цели обучения

Различать мышцы, которые заставляют ступни двигаться

Основные выводы

Ключевые моменты
  • Большой палец стопы или большой палец разгибается коротким разгибателем большого пальца стопы на вершине стопы.
  • Короткий сгибатель большого пальца стопы и отводящий палец большого пальца стопы сгибают и отводят большой палец ноги. Приводящая мышца большого пальца стопы приводит к большому пальцу стопы.
  • Остальные пальцы стопы сгибаются длинным сгибателем пальцев стопы, поясничными связками, коротким сгибателем пальцев и квадратной мышцей подошвы.
  • Мизинец также контролируется минимальным сгибателем пальцев и минимальным отводящим пальцем.
  • Пальцы стопы (кроме большого пальца стопы) вытянуты коротким разгибателем пальцев.
  • Дорсальная и подошвенная межкостные мышцы — это мышцы между плюсневыми костями, которые помогают поддерживать свод стопы. Также помогает в сгибании и разгибании.
Ключевые термины
  • подошвенный : подошва стопы.
  • дорсальный : верхняя поверхность стопы.

Стопа играет фундаментальную роль в поддержании вертикальной осанки и равновесия при ходьбе, поэтому она должна обеспечивать прочную основу, позволяя при этом совершать небольшие точные движения. Стопу можно разделить на дорсальный и подошвенный отделы, последний из которых содержит значительно больше мышц.

Спинной отсек

Хотя многие внешние мышцы прикрепляются к спинному отделу, есть только три внутренних мышцы, которые действуют на стопу, и две внешние мышцы, которые действуют на стопу, а не на лодыжку.

  • Extensor Digitorum Longus : Длинный разгибатель пальцев — это глубоко расположенная внешняя мышца, которая проходит по длине большеберцовой кости.
    • Прикрепления: берет начало от большеберцовой кости и переходит в сухожилие, переходит в стопу, разделяется на четыре части и прикрепляется к пальцам ноги.
    • Действия: Разгибание пальцев ног.
  • Extensor Digitorum Brevis : Короткий разгибатель пальцев — это глубоко расположенная внутренняя мышца, лежащая под сухожилием длинного разгибателя пальцев.
    • Насадки: берет начало от пятки и прикрепляется к пальцам ног.
    • Действия: Разгибание пальцев ног.
  • Extensor Hallucis Longus : Длинный разгибатель большого пальца — это глубоко расположенная внешняя мышца, расположенная под длинным разгибателем пальцев.
    • Прикрепления: берет начало от малоберцовой кости и прикрепляется к большому пальцу ноги.
    • Действия: Разгибание большого пальца стопы.
  • Extensor Hallucis Brevis : Короткий разгибатель большого пальца стопы — это внутренняя мышца стопы, расположенная между длинным разгибателем пальцев и латеральнее длинного разгибателя большого пальца.
    • Насадки: берет начало от пятки и прикрепляется к большому пальцу ноги.
    • Действия: Разгибание большого пальца стопы.
  • Dorsal Interossei : Между плюсневыми костей расположены четыре спинных межкостных суставов. Каждая возникает из двух плюсневых костей.
    • Прикрепления: Отходит от сторон от первой до пятой плюсневых костей (от большого пальца к мизинцу). Первая мышца прикрепляется к медиальной стороне фаланги второго пальца стопы. Вторая-четвертая межкостные мышцы прикрепляются к боковым сторонам фаланг пальцев второй-четвертой.
    • Действия: Отведите и согните пальцы со второго по четвертый.

Подошвенное отделение

Мышцы подошвенного отдела стопы играют ключевую роль в стабилизации свода стопы и контроле пальцев, обеспечивая необходимую силу и точные движения для поддержания равновесия и осанки и содействия ходьбе.

Подошвенный вид стопы : мышцы, сухожилия и связки подошвы стопы с коротким сгибателем пальцев показаны красным.

  • Отводящая мышца большого пальца стопы : Отводящая мышца большого пальца стопы расположена на медиальной стороне подошвы.
    • Насадки: берет начало от пятки и прикрепляется к основанию большого пальца ноги.
    • Действия: Отводит и сгибает большой палец ноги.
  • Flexor Digitorum Brevis : Короткий сгибатель пальцев стопы расположен латеральнее отводящего большого пальца стопы и находится в середине подошвы стопы.
    • Насадки: берет начало от пятки и прикрепляется ко всем пальцам ноги, кроме мизинца.
    • Действия: Сгибает пальцы ног в проксимальных межфаланговых (между preoxmales фалангах и средними фалангами) суставах.
  • Отводящая мышца Digiti Minimi : Отводящая мышца минимального пальца расположена на боковой стороне стопы.
    • Насадки: берет начало на пятке и прикрепляется к мизинцу ноги.
    • Действия: Отводит и сгибает мизинец ноги.
  • Quadratus Plantae : квадратная мышца plantae расположена выше сухожилий длинного сгибателя пальцев.
    • Прикрепления: берет начало от пятки и прикрепляется к сухожилиям длинного сгибателя пальцев.
    • Действия: Помогает длинному сгибателю пальцев сгибать четыре боковых пальца стопы.
  • Lumbricals : Lumbricals — это четыре небольших скелетных мускулатуры, принадлежащих сухожилиям длинного сгибателя пальцев и пронумерованных с медиальной стороны стопы.
    • Прикрепления: происходит от сухожилий длинного сгибателя пальцев. Крепится к пальцам ног.
    • Действия: Сгибает плюсневые фаланги (между плюсневыми и проксимальными фалангами) суставов, разгибая межфаланговые суставы (между проксимальными фалангами и средними фалангами).
  • Flexor Hallucis Brevis : Короткий сгибатель большого пальца стопы расположен на медиальной стороне стопы.
    • Насадки: берут начало на подошвенных поверхностях кубовидной и латеральной клинописных костей на подошве стопы и прикрепляются к большому пальцу стопы.
    • Действия: Сгибает большой палец ноги.
  • Приводящая мышца большого пальца стопы : Приводящая мышца большого пальца стопы расположена латеральнее короткого сгибателя большого пальца.
    • Прикрепления: Приводящая мышца большого пальца стопы берет начало от оснований первых четырех плюсневых костей, а также от подошвенных связок до прикрепления к большому пальцу стопы.
    • Действия: Приводит большой палец ноги и поддерживает свод стопы.
  • Межкостная подошва : Три подошвенной межкостной кости лежат скорее под плюсневыми костями, чем между ними.Каждый связан с одной плюсневой костью.
    • Прикрепления: берет начало на медиальной стороне третьей-пятой плюсневых костей. Крепится к медиальным сторонам фаланг пальцев от трех до пяти.
    • Действия: Приводит и сгибает пальцы от трех до пяти.
  • Flexor Digiti Minimi Brevis : Подобно межкостному суставу по структуре, flexor digiti minimi brevis находится на боковой стороне стопы под плюсневой костью мизинца.
    • Прикрепления: берет начало от основания пятой плюсневой кости и прикрепляется к основанию фаланги мизинца
    • Действия: Сгибает мизинец ноги.

Мышечная система — Мышцы человеческого тела

Нажмите, чтобы просмотреть большое изображение

Продолжение сверху …

Анатомия мышечной системы

Типы мышц

Существует три типа мышечной ткани: висцеральная, сердечная и скелетная.

Висцеральная мышца

Висцеральные мышцы находятся внутри таких органов, как желудок, , кишечник и кровеносные сосуды. Самая слабая из всех мышечных тканей, висцеральная мышца заставляет органы сокращаться для перемещения веществ через орган. Поскольку висцеральные мышцы контролируются бессознательной частью мозга, они известны как непроизвольные мышцы — они не могут напрямую контролироваться сознанием. Термин «гладкая мышца» часто используется для описания висцеральной мышцы, потому что она имеет очень гладкий, однородный вид при просмотре под микроскопом.Этот гладкий вид резко контрастирует с полосатым внешним видом сердечных и скелетных мышц.

Сердечная мышца

Обнаружен только в сердце , сердечная мышца отвечает за перекачивание крови по всему телу. Тканью сердечной мышцы нельзя управлять сознательно, поэтому это непроизвольная мышца. В то время как гормоны и сигналы от мозга и регулируют скорость сокращения, сердечная мышца стимулирует себя к сокращению. Естественный кардиостимулятор сердца состоит из ткани сердечной мышцы, которая стимулирует сокращение других клеток сердечной мышцы.Считается, что сердечная мышца из-за своей самостимуляции является аоритмичной или внутренне контролируемой.

Клетки сердечной мышечной ткани имеют поперечно-полосатую форму, то есть кажутся светлыми и темными полосами при просмотре под световым микроскопом. Расположение белковых волокон внутри клеток вызывает появление этих светлых и темных полос. Штрихи указывают на то, что мышечная клетка очень сильна, в отличие от висцеральных мышц.

Клетки сердечной мышцы представляют собой разветвленные клетки X- или Y-формы, плотно связанные между собой специальными соединениями, называемыми вставными дисками.Вставные диски состоят из пальцевидных выступов двух соседних клеток, которые сцепляются и обеспечивают прочную связь между клетками. Разветвленная структура и вставные диски позволяют мышечным клеткам противостоять высокому кровяному давлению и перекачке крови на протяжении всей жизни. Эти функции также помогают быстро распространять электрохимические сигналы от клетки к клетке, чтобы сердце могло биться как единое целое.

Скелетные мышцы

Скелетная мышца — единственная произвольная мышечная ткань в человеческом теле — она ​​контролируется сознательно.Каждое физическое действие, которое человек сознательно выполняет (например, речь, ходьба или письмо), требует скелетных мышц. Функция скелетных мышц заключается в сокращении для перемещения частей тела ближе к кости, к которой прикреплена мышца. Большинство скелетных мышц прикреплены к двум костям через сустав, поэтому мышца служит для перемещения частей этих костей ближе друг к другу.

Клетки скелетных мышц образуются, когда множество более мелких клеток-предшественников сливаются вместе, образуя длинные, прямые, многоядерные волокна.Эти волокна скелетных мышц имеют очень сильную поперечно-полосатую форму, как и сердечная мышца. Скелетная мышца получила свое название от того факта, что эти мышцы всегда соединяются со скелетом по крайней мере в одном месте.

Общая анатомия скелетной мышцы

Большинство скелетных мышц прикреплены к двум костям через сухожилия. Сухожилия — это жесткие полосы плотной нормальной соединительной ткани, сильные коллагеновые волокна которой прочно прикрепляют мышцы к костям. Сухожилия подвергаются сильному стрессу, когда на них тянутся мышцы, поэтому они очень сильны и вплетены в оболочку как мышц, так и костей.

Мышцы двигаются, укорачивая свою длину, растягивая сухожилия и приближая кости друг к другу. Одна из костей тянется к другой кости, которая остается неподвижной. Место на неподвижной кости, которое соединяется сухожилиями с мышцей, называется исходной точкой. Место на движущейся кости, которое соединяется с мышцей посредством сухожилий, называется прикреплением. Брюшко мышцы — это мясистая часть мышцы между сухожилиями, которая действительно сокращается.

Названия скелетных мышц

Названия скелетных мышц основаны на множестве различных факторов, включая их расположение, происхождение и прикрепление, количество источников, форму, размер, направление и функцию.

  • Расположение . Многие мышцы получили свое название от анатомической области. Прямые мышцы живота и поперечные мышцы живота, например, находятся в области живота . Некоторые мышцы, такие как tibialis anterior , названы в честь части кости (передняя часть большеберцовой кости ), к которой они прикреплены.Другие мышцы используют гибрид этих двух, например, brachioradialis, названный в честь области (плечевой) и кости (радиус , радиус ).
  • Происхождение и размещение . Названия некоторых мышц основаны на их соединении с неподвижной костью (происхождение) и подвижной костью (прикрепление). Эти мышцы очень легко идентифицировать, если вы знаете названия костей, к которым они прикреплены. Примеры этого типа мышц включают грудино-ключично-сосцевидную мышцу (соединяющую грудину и ключицу с сосцевидным отростком черепа) и затылочно-лобную кость (соединяющую затылочную кость с лобной костью ).
  • Количество источников . Некоторые мышцы соединяются более чем с одной костью или с более чем одним местом на кости и, следовательно, имеют более одного происхождения. Мышца с двумя источниками называется бицепс. Мышца с тремя источниками — это трехглавая мышца. Наконец, мышца с четырьмя источниками — четырехглавая мышца.
  • Форма, размер и направление . Мы также классифицируем мышцы по их форме. Например, дельтоиды имеют дельтовидную или треугольную форму. Зубчатые мышцы имеют зубчатую или пилообразную форму.Большой ромбовидный элемент имеет форму ромба или ромба. Размер мышцы можно использовать для различения двух мышц, находящихся в одной и той же области. Ягодичная область содержит три мышцы, различающиеся по размеру: большая ягодичная мышца (большая), средняя ягодичная мышца (средняя) и минимальная ягодичная мышца (самая маленькая). Наконец, направление движения мышечных волокон можно использовать для идентификации мышцы. В области живота есть несколько наборов широких плоских мышц. Мышцы, волокна которых проходят прямо вверх и вниз, — это rectus abdominis, , те, которые идут поперечно (слева направо), — это поперечные мышцы живота, а те, которые идут под углом, — это косые мышцы живота.
  • Функция . Иногда мышцы классифицируют по типу выполняемой ими функции. Большинство мышц предплечий названы в зависимости от их функции, потому что они расположены в одной области и имеют схожие формы и размеры. Например, группа сгибателей предплечья сгибает запястье и пальцы. Супинатор — это мышца, которая поддерживает запястье, переворачивая его ладонью вверх. В ноге есть мышцы, называемые аддукторами, роль которых состоит в том, чтобы сводить (стягивать) ноги.

Группы действий в скелетных мышцах

Скелетные мышцы редко работают сами по себе для выполнения движений тела. Чаще они работают в группах, чтобы производить точные движения. Мышца, которая производит какое-либо конкретное движение тела, известна как агонист или первичный двигатель. Агонист всегда соединяется с мышцей-антагонистом, которая оказывает противоположный эффект на одни и те же кости. Например, двуглавая мышца плеча сгибает руку в локте , . Как антагонист этого движения, трехглавая мышца плеча разгибает руку в локте.Когда трицепс разгибает руку, бицепс считается антагонистом.

Помимо пары агонист / антагонист, другие мышцы работают, чтобы поддерживать движения агониста. Синергисты — это мышцы, которые помогают стабилизировать движение и уменьшить посторонние движения. Обычно они обнаруживаются в регионах рядом с агонистом и часто соединяются с одними и теми же костями. Поскольку скелетные мышцы перемещают вставку ближе к неподвижному началу, фиксирующие мышцы помогают в движении, удерживая исходную точку стабильной.Если вы поднимаете что-то тяжелое руками, фиксаторы в области туловища удерживают ваше тело в вертикальном и неподвижном положении, чтобы вы сохраняли равновесие во время подъема.

Гистология скелетных мышц

Волокна скелетных мышц резко отличаются от других тканей тела из-за их узкоспециализированных функций. Многие органеллы, из которых состоят мышечные волокна, уникальны для этого типа клеток.

Сарколемма — клеточная мембрана мышечных волокон. Сарколемма действует как проводник электрохимических сигналов, стимулирующих мышечные клетки.К сарколемме подключены поперечные канальцы (Т-канальцы), которые помогают переносить эти электрохимические сигналы в середину мышечного волокна. Саркоплазматический ретикулум служит хранилищем ионов кальция (Ca2 +), которые жизненно важны для сокращения мышц. Митохондрии, «энергетические дома» клетки, изобилуют мышечными клетками, которые расщепляют сахара и обеспечивают энергией в форме АТФ активные мышцы. Большая часть структуры мышечных волокон состоит из миофибрилл, которые являются сократительными структурами клетки.Миофибриллы состоят из множества белковых волокон, организованных в повторяющиеся субъединицы, называемые саркомерами. Саркомер — функциональная единица мышечных волокон. (См. Макронутриенты для получения дополнительной информации о роли сахаров и белков.)

Структура саркомера

Саркомеры состоят из двух типов белковых волокон: толстых и тонких.

Физиология мышечной системы

Функция мышечной ткани

Основная функция мышечной системы — движение.Мышцы — единственная ткань в теле, которая имеет способность сокращаться и, следовательно, перемещать другие части тела.

С функцией движения связана вторая функция мышечной системы: поддержание осанки и положения тела. Мышцы часто сокращаются, чтобы удерживать тело неподвижно или в определенном положении, а не для движения. Мышцы, отвечающие за осанку, обладают наибольшей выносливостью из всех мышц тела — они поддерживают тело в течение дня, не уставая.

Другая функция, связанная с движением, — это движение веществ внутри тела. Сердечные и висцеральные мышцы в первую очередь отвечают за транспортировку таких веществ, как кровь или пища, из одной части тела в другую.

Последняя функция мышечной ткани — это выработка тепла телом. В результате высокой скорости метаболизма сокращающихся мышц наша мышечная система производит большое количество тепла. Многие небольшие мышечные сокращения внутри тела производят естественное тепло нашего тела.Когда мы напрягаемся больше, чем обычно, дополнительные сокращения мышц приводят к повышению температуры тела и, в конечном итоге, к потоотделению.

Скелетные мышцы как рычаги

Скелетные мышцы работают вместе с костями и суставами, образуя рычажные системы. Мышца действует как сила усилия; сустав действует как точка опоры; кость, которую двигает мышца, действует как рычаг; и перемещаемый объект действует как нагрузка.

Существует три класса рычагов, но подавляющее большинство рычагов в корпусе являются рычагами третьего класса.Рычаг третьего класса — это система, в которой точка опоры находится на конце рычага, а усилие — между точкой опоры и грузом на другом конце рычага. Рычаги третьего класса в теле служат для увеличения расстояния, на которое перемещается нагрузка, по сравнению с расстоянием, на которое сокращается мышца.

Компромисс для этого увеличения расстояния заключается в том, что сила, необходимая для перемещения груза, должна быть больше, чем масса груза. Например, двуглавая мышца плеча руки натягивает радиус предплечья, вызывая сгибание в локтевом суставе в рычажной системе третьего класса.Очень небольшое изменение длины бицепса вызывает гораздо большее движение предплечья и кисти, но сила, прикладываемая бицепсом, должна быть выше, чем нагрузка, перемещаемая мышцей.

Моторные агрегаты

Нервные клетки, называемые мотонейронами, контролируют скелетные мышцы. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе, известной как двигательная единица. Когда мотонейрон получает сигнал от мозга, он одновременно стимулирует все мышечные клетки своей двигательной единицы.

Размер двигательных единиц варьируется по всему телу в зависимости от функции мышцы. Мышцы, которые выполняют тонкие движения, такие как глаза или пальцы, имеют очень мало мышечных волокон в каждой двигательной единице, чтобы повысить точность контроля мозга над этими структурами. Мышцы, которым для выполнения своих функций требуется большая сила, такие как мышцы ног или рук, имеют множество мышечных клеток в каждой двигательной единице. Один из способов, которыми тело может контролировать силу каждой мышцы, — это определение того, сколько двигательных единиц активировать для данной функции.Это объясняет, почему те же мышцы, которые используются для взятия карандаша, используются и для взятия шара для боулинга.

Цикл сокращения

Мышцы сокращаются под действием сигналов от их мотонейронов. Моторные нейроны контактируют с мышечными клетками в точке, называемой нервно-мышечным соединением (НМС). Моторные нейроны выделяют химические вещества-нейротрансмиттеры в НМС, которые связываются со специальной частью сарколеммы, известной как моторная концевая пластинка. Концевая пластина двигателя содержит множество ионных каналов, которые открываются в ответ на нейротрансмиттеры и позволяют положительным ионам проникать в мышечные волокна.Положительные ионы образуют электрохимический градиент внутри клетки, который распространяется по сарколемме и Т-канальцам, открывая еще больше ионных каналов.

Когда положительные ионы достигают саркоплазматической сети, ионы Ca2 + высвобождаются и позволяют проникать в миофибриллы. Ионы Ca2 + связываются с тропонином, что заставляет молекулу тропонина изменять форму и перемещать соседние молекулы тропомиозина. Тропомиозин перемещается от участков связывания миозина на молекулах актина, позволяя актину и миозину связываться вместе.

молекул АТФ заставляют белки миозина в толстых филаментах изгибаться и притягивать молекулы актина в тонких филаментах. Белки миозина действуют как весла на лодке, притягивая тонкие волокна ближе к центру саркомера. По мере того как тонкие нити стягиваются вместе, саркомер укорачивается и сжимается. Миофибриллы мышечных волокон состоят из множества саркомеров в ряд, поэтому, когда все саркомеры сокращаются, мышечные клетки укорачиваются с большой силой относительно их размера.

Мышцы продолжают сокращаться, пока они стимулируются нейромедиатором.Когда двигательный нейрон прекращает высвобождение нейротрансмиттера, процесс сокращения меняется на противоположный. Кальций возвращается в саркоплазматический ретикулум; тропонин и тропомиозин возвращаются в исходное положение; предотвращается связывание актина и миозина. Саркомеры возвращаются в свое удлиненное состояние покоя, как только действие миозина на актин прекращается.

Определенные состояния или расстройства, такие как миоклонус, могут влиять на нормальное сокращение мышц. Вы можете узнать о проблемах со здоровьем опорно-двигательного аппарата в нашем разделе, посвященном заболеваниям и состояниям.Кроме того, узнайте больше о достижениях в области тестирования ДНК, которые помогают нам понять генетический риск развития первичной дистонии с ранним началом.

Типы мышечных сокращений

Силой сокращения мышцы можно управлять с помощью двух факторов: количества двигательных единиц, участвующих в сокращении, и количества стимулов со стороны нервной системы. Одиночный нервный импульс двигательного нейрона заставляет двигательную единицу кратковременно сокращаться, прежде чем расслабиться. Это небольшое сокращение известно как сокращение подергивания.Если двигательный нейрон подает несколько сигналов в течение короткого периода времени, сила и продолжительность сокращения мышц увеличиваются. Это явление известно как временное суммирование. Если двигательный нейрон подает много нервных импульсов в быстрой последовательности, мышца может перейти в состояние столбняка или полного и продолжительного сокращения. Мышца будет оставаться в состоянии столбняка до тех пор, пока скорость нервного сигнала не снизится или пока мышца не станет слишком утомленной, чтобы поддерживать столбняк.

Не все сокращения мышц вызывают движение.Изометрические сокращения — это легкие сокращения, которые увеличивают напряжение в мышце без приложения силы, достаточной для движения части тела. Когда люди напрягают свое тело из-за стресса, они выполняют изометрическое сокращение. Удержание объекта в неподвижном состоянии и сохранение осанки также являются результатом изометрических сокращений. Сокращение, которое действительно вызывает движение, является изотоническим сокращением. Изотонические сокращения необходимы для развития мышечной массы при поднятии тяжестей.

Мышечный тонус — это естественное состояние, при котором скелетная мышца всегда остается частично сокращенной.Мышечный тонус обеспечивает небольшое напряжение в мышцах, чтобы предотвратить повреждение мышц и суставов от резких движений, а также помогает поддерживать осанку тела. Все мышцы постоянно поддерживают определенный мышечный тонус, если только мышца не была отключена от центральной нервной системы из-за повреждения нервов.

Функциональные типы волокон скелетных мышц

Волокна скелетных мышц можно разделить на два типа в зависимости от того, как они производят и используют энергию: Тип I и Тип II.

  1. Волокна типа I сокращаются очень медленно и намеренно. Они очень устойчивы к усталости, потому что используют аэробное дыхание для производства энергии из сахара. Мы обнаруживаем волокна типа I в мышцах по всему телу, обеспечивающие выносливость и осанку. Около позвоночника, и областей шеи очень высокая концентрация волокон типа I поддерживает тело в течение дня.
  2. Волокна типа II подразделяются на две подгруппы: тип II A и тип II B.

    • Волокна типа II A быстрее и прочнее, чем волокна типа I, но не обладают такой высокой выносливостью.Волокна типа II A находятся по всему телу, но особенно в ногах, где они работают, чтобы поддерживать ваше тело в течение долгого дня ходьбы и стояния.
    • Волокна
    • типа II B даже быстрее и прочнее, чем волокна типа II A, но обладают еще меньшей выносливостью. Волокна типа II B также намного светлее, чем волокна типа I и типа II A, из-за отсутствия миоглобина, пигмента, накапливающего кислород. Мы находим волокна типа II B по всему телу, но особенно в верхней части тела, где они придают скорость и силу рукам и груди за счет выносливости.

Мышечный метаболизм и усталость

Мышцы получают энергию из разных источников в зависимости от ситуации, в которой они работают. Мышцы используют аэробное дыхание, когда мы призываем их произвести силу от низкого до среднего. Аэробное дыхание требует кислорода для производства около 36-38 молекул АТФ из молекулы глюкозы. Аэробное дыхание очень эффективно и может продолжаться до тех пор, пока мышца получает достаточное количество кислорода и глюкозы для продолжения сокращения.Когда мы используем мышцы для создания высокого уровня силы, они становятся настолько плотными, что кислород, несущий кровь, не может попасть в мышцы. Это состояние заставляет мышцы вырабатывать энергию с помощью молочнокислого брожения, формы анаэробного дыхания. Анаэробное дыхание намного менее эффективно, чем аэробное дыхание — на каждую молекулу глюкозы вырабатывается только 2 АТФ. Мышцы быстро устают, поскольку они сжигают свои запасы энергии при анаэробном дыхании.

Чтобы мышцы работали дольше, мышечные волокна содержат несколько важных молекул энергии.Миоглобин, красный пигмент, обнаруживаемый в мышцах, содержит железо и хранит кислород так же, как гемоглобин в крови. Кислород миоглобина позволяет мышцам продолжать аэробное дыхание в отсутствие кислорода. Еще одно химическое вещество, которое помогает поддерживать работу мышц, — это креатинфосфат. Мышцы используют энергию в виде АТФ, превращая АТФ в АДФ, чтобы высвободить свою энергию. Креатинфосфат отдает свою фосфатную группу АДФ, чтобы превратить его обратно в АТФ, чтобы обеспечить мышцам дополнительную энергию.Наконец, мышечные волокна содержат гликоген, запасающий энергию, большую макромолекулу, состоящую из множества связанных глюкоз. Активные мышцы расщепляют глюкозы из молекул гликогена, чтобы обеспечить внутреннее снабжение энергией.

Когда в мышцах заканчивается энергия во время аэробного или анаэробного дыхания, мышца быстро утомляется и теряет способность сокращаться. Это состояние известно как мышечная усталость. Утомленная мышца содержит очень мало или совсем не содержит кислорода, глюкозы или АТФ, но вместо этого имеет много продуктов жизнедеятельности дыхания, таких как молочная кислота и АДФ.Организм должен получать дополнительный кислород после нагрузки, чтобы заменить кислород, который был сохранен в миоглобине в мышечных волокнах, а также для обеспечения аэробного дыхания, которое восстановит запасы энергии внутри клетки. Кислородный долг (или восстановление потребления кислорода) — это название дополнительного кислорода, который организм должен потреблять, чтобы восстановить мышечные клетки до состояния покоя. Это объясняет, почему вы чувствуете одышку в течение нескольких минут после напряженной деятельности — ваше тело пытается вернуться в нормальное состояние.

мышц — канал лучшего здоровья

В человеческом теле около 600 мышц. Мышцы выполняют ряд функций — от перекачивания крови и поддержки движений до подъема тяжестей или родов. Мышцы работают, сокращаясь или расслабляясь, вызывая движение. Это движение может быть произвольным (то есть движение совершается осознанно) или выполняться без нашего сознательного осознания (непроизвольное).

Глюкоза из углеводов в нашем рационе питает наши мышцы. Для правильной работы мышечной ткани также необходимы определенные минералы, электролиты и другие пищевые вещества, такие как кальций, магний, калий и натрий.

Мышцы могут поражать целый ряд проблем — все они известны как миопатия. Мышечные расстройства могут вызывать слабость, боль или даже паралич.

Различные типы мышц


Три основных типа мышц включают:
  • Скелетную мышцу — специализированную ткань, которая прикрепляется к костям и позволяет двигаться. Вместе скелетные мышцы и кости называются опорно-двигательной системой (также известной как опорно-двигательная система). Вообще говоря, скелетные мышцы сгруппированы в противостоящие пары, такие как бицепсы и трицепсы на передней и задней части плеча.Скелетные мышцы находятся под нашим сознательным контролем, поэтому они также известны как произвольные мышцы. Другой термин — поперечно-полосатые мышцы, поскольку ткань выглядит полосатой при просмотре под микроскопом.
  • Гладкая мышца — расположена в различных внутренних структурах, включая пищеварительный тракт, матку и кровеносные сосуды, такие как артерии. Гладкая мускулатура состоит из слоистых листов, которые волнообразно сокращаются по длине конструкции. Другой распространенный термин — непроизвольные мышцы, поскольку движение гладких мышц происходит без нашего осознания.
  • Сердечная мышца — мышца, специфичная для сердца. Сердце сжимается и расслабляется без нашего осознания.

Состав мышц


Скелетные, гладкие и сердечные мышцы выполняют очень разные функции, но имеют одинаковый базовый состав. Мышца состоит из тысяч плотно связанных друг с другом эластичных волокон. Каждый пучок обернут тонкой прозрачной мембраной, называемой перимизием.

Отдельное мышечное волокно состоит из блоков белков, называемых миофибриллами, которые содержат специальный белок (миоглобин) и молекулы, обеспечивающие кислород и энергию, необходимые для сокращения мышц.Каждая миофибрилла содержит филаменты, которые складываются вместе при получении сигнала к сокращению. Это укорачивает длину мышечного волокна, что, в свою очередь, укорачивает всю мышцу, если одновременно стимулируется достаточное количество волокон.

Нервно-мышечная система


Мозг, нервы и скелетные мышцы работают вместе, вызывая движение. Все это известно как нервно-мышечная система. Типичная мышца обслуживается от 50 до 200 (или более) ветвей специализированных нервных клеток, называемых двигательными нейронами.Они подключаются непосредственно к скелетным мышцам. Кончик каждой ветви называется пресинаптическим окончанием. Точка контакта между пресинаптическим окончанием и мышцей называется нервно-мышечным соединением.

Чтобы переместить определенную часть тела:

  • Мозг отправляет сообщение моторным нейронам.
  • Это вызывает высвобождение химического ацетилхолина из пресинаптических окончаний.
  • Мышца отвечает на ацетилхолин сокращением.

Формы скелетных мышц


Вообще говоря, скелетные мышцы бывают четырех основных форм, включая:
  • Веретено — широкое посередине и сужающееся на обоих концах, например, двуглавая мышца на передней части плеча.
  • Плоский — как лист, например диафрагма, отделяющая грудную клетку от брюшной полости.
  • Треугольная — более широкая снизу, сужающаяся вверху, например, у дельтовидных мышц плеча.
  • Круглый — форма кольца, напоминающая пончик, например мышцы, окружающие рот, зрачки и задний проход. Их также называют сфинктерами.

Мышечные расстройства


Мышечные расстройства могут вызывать слабость, боль, потерю движений и даже паралич.Ряд проблем, влияющих на мышцы, под общим названием миопатия. Общие проблемы с мышцами включают:
  • Травмы или чрезмерное использование, включая растяжения или деформации, судороги, тендинит и синяки
  • Генетические проблемы, такие как мышечная дистрофия
  • Воспаление, такое как миозит
  • Заболевания нервов, поражающих мышцы, например рассеянный склероз
  • Состояния, вызывающие мышечную слабость, такие как метаболические, эндокринные или токсические нарушения; например, заболевания щитовидной железы и надпочечников, алкоголизм, отравление пестицидами, лекарства (стероиды, статины) и миастения гравис
  • Раковые заболевания, такие как саркома мягких тканей.

Куда обратиться за помощью

Что нужно запомнить

  • В человеческом теле около 600 мускулов.
  • Три основных типа мышц включают скелетные, гладкие и сердечные.
  • Мозг, нервы и скелетные мышцы работают вместе, вызывая движение — это вместе известно как нервно-мышечная система.

Структура, функции и контроль опорно-двигательного аппарата человека

Цитирование: Мерфи А.С., Малдун С.Ф., Бейкер Д., Ластовка А., Беннетт Б., Ян М. и др.(2018) Структура, функции и контроль опорно-двигательного аппарата человека. PLoS Biol 16 (1): e2002811. https://doi.org/10.1371/journal.pbio.2002811

Академический редактор: Грэм Тейлор, Оксфордский университет, Соединенное Королевство Великобритании и Северной Ирландии

Поступила: 21 апреля 2017 г .; Одобрена: 15 декабря 2017 г .; Опубликован: 18 января 2018 г.

Авторские права: © 2018 Murphy et al.Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии указания автора и источника.

Доступность данных: Все соответствующие данные находятся в документе и его файлах с вспомогательной информацией. Два использованных скелетно-мышечных графика, а также распределение мышечных сообществ и данные, использованные для создания всех цифр, можно найти по адресу DOI: 10.5281 / zenodo.1069104.

Финансирование: Национальный научный фонд (номер гранта PHY-1554488). Спонсор не принимал участия в планировании исследования, сборе и анализе данных, принятии решения о публикации или подготовке рукописи.

Конкурирующие интересы: Авторы заявили об отсутствии конкурирующих интересов.

Введение

Взаимосвязанная природа человеческого тела долгое время была предметом научных исследований и суеверных верований. От древних юморов, связывающих сердце, печень, селезенку и мозг смелостью, спокойствием и надеждой [1], до современного понимания связи кишечника и мозга [2], люди склонны искать взаимосвязи между разрозненными частями тела, чтобы объяснять сложные явления.Тем не менее, напряжение остается между этой базовой концептуализацией человеческого тела и редукционизмом, неявным в современной науке [3]. Понимание всей системы часто относят к футуристическому миру, в то время как отдельные эксперименты уточняют наше понимание мельчайших составных частей.

Опорно-двигательный аппарат человека не является исключением из этой дихотомии. В то время как медицинская практика сосредоточена на кистях, стопах или лодыжках, клиницисты знают, что травмы одной части опорно-двигательного аппарата обязательно влияют на работу других (даже отдаленно удаленных) частей [4].Травма лодыжки может изменить характер походки, что приведет к хронической боли в спине; травма плеча может изменить осанку и вызвать дискомфорт в шее. Понимание фундаментальных отношений между фокальной структурой и потенциальными удаленными взаимодействиями требует целостного подхода.

Здесь мы подробно описываем такой подход. Наша концептуальная основа мотивирована недавними теоретическими достижениями в сетевой науке [5], которая является новой дисциплиной, построенной на упорядоченном слиянии математики (в частности, теории графов [6]) и физики (в частности, статистической механики [7]), компьютеров. наука, статистика [8] и системная инженерия.Подход упрощает сложные системы, разграничивая их компоненты и отображая паттерн взаимодействия между этими компонентами [9]. Это представление кажется особенно подходящим для изучения опорно-двигательного аппарата человека, который состоит из костей и соединяющих их мышц. В этом исследовании мы использовали этот подход для оценки структуры, функции и контроля опорно-двигательного аппарата.

Использование сетевой науки для понимания опорно-двигательного аппарата в последние годы расширилось [10].Однако этот каркас в основном использовался для исследования свойств локальных мышечных или костных сетей. Например, местная структура черепа была исследована, чтобы выяснить, как можно классифицировать кости [11]. Кроме того, были проведены исследования топологии костно-мышечной сети позвоночника для оценки напряжений и деформаций в костях [12]. Существует несколько исследований, посвященных всей опорно-двигательной системе, хотя они не используют математические инструменты, которые мы использовали здесь [13,14].Настоящее исследование отличается от предыдущих работ оценкой всей опорно-двигательной системы в сочетании с математическими инструментами науки о сетях.

В этом более широком контексте мы сосредоточились на проблеме реабилитации после травм скелетных мышц или коры головного мозга. Прямое повреждение мышцы или связанного с ней сухожилия или связки влияет на другие мышцы через компенсаторные механизмы тела [15]. Точно так же потеря использования определенной мышцы или группы мышц из-за прямого повреждения коры головного мозга может привести к компенсаторному использованию альтернативных мышц [16,17].То, как структурированы взаимосвязи опорно-двигательного аппарата и как они функционируют, напрямую ограничивает то, как повреждение определенной мышцы повлияет на опорно-двигательный аппарат в целом. Понимание этих взаимосвязей может дать столь необходимое понимание того, какие мышцы больше всего подвержены риску вторичной травмы из-за компенсаторных изменений, возникающих в результате очаговой травмы, тем самым обеспечивая более комплексные подходы к реабилитации. Кроме того, понимание того, как кора головного мозга отображается не только на отдельные мышцы, но и на группы топологически близких мышц, может помочь в будущих эмпирических исследованиях взаимосвязи между очаговыми повреждениями (включая инсульт) моторной коры и риском вторичного повреждения.

Материалы и методы

Строительство сети

Используя таблицы Hosford Muscle [18], мы построили гиперграф опорно-двигательного аппарата, представив 173 кости (некоторые из которых на самом деле являются связками и сухожилиями) в виде узлов и 270 мышц в виде гиперребер, соединяющих эти узлы (происхождение мышц и точки прикрепления указаны в таблице S9. ). Этот гиперграф также можно интерпретировать как двудольную сеть, в которой мышцы являются одной группой, а кости — второй группой (рис. 1а). Матрица заболеваемости C 173 × 270 скелетно-мышечной сети, таким образом, определяется как C ij = 1, если v i ∈ e j , и 0 в противном случае, где V = {v 1 , · · ·, v 173 } — это набор узлов (костей), а E = {e 1 , · · ·, e 270 } — набор гиперребер (мышц).Это гиперграфическое представление тела устраняет большую часть сложности опорно-двигательного аппарата, кодируя только то, какие мышцы прикрепляются к каким костям. Весь анализ применялся только к одной половине (левой или правой) тела, потому что каждое полушарие головного мозга контролирует только противоположную сторону тела. Поэтому мы еще больше упростили нашу модель, допустив лево-правую симметрию; на любых фигурах, на которых изображены обе половины тела, вторая половина присутствует исключительно для визуальной интуиции.

Рис. 1. Схема представления данных и вычислительных методов.

(a) Скелетно-мышечная сеть была сначала преобразована в двудольную матрицу, где 1/0 указывает на наличие / отсутствие связи между мышцами и костями. (b) Сообщества топологически связанных мышц идентифицируются путем (1) преобразования гиперграфа в граф мышца-мышцы, в котором каждая запись кодирует количество общих костей каждой пары мышц, и (2) впоследствии мышцы были разбиты на сообщества , в котором составляющие члены более плотно связаны с другими членами своего сообщества, чем с членами других сообществ.(c) Чтобы облегчить пертурбации, скелетно-мышечная сеть была физически встроена, так что кости (узлы) изначально располагались в их правильных анатомических положениях. (d) Чтобы понять влияние отдельных мышц на взаимосвязанную систему, все узлы, связанные выбранным гиперребром, были возмущены в четвертом пространственном измерении.

https://doi.org/10.1371/journal.pbio.2002811.g001

Костно-ориентированный граф A и мышечный граф B (рис. 1b) — это просто одномодовые проекции C.Проекция на кости A = C T C, а проекция на мышцы B = CC T . Затем диагональные элементы были установлены равными нулю, в результате чего мы получили взвешенную матрицу смежности [5]. Мы получили оценочные анатомические местоположения центра масс каждой мышцы (и кости), изучив анатомические тексты [19] и оценив x-, y- и z-координаты для отображения на графическом представлении человеческого тела (рис. 1c). .

Расчет баллов удара

Чтобы измерить потенциальную функциональную роль каждой мышцы в сети, мы использовали классический пертурбативный подход.Чтобы максимизировать простоту и потенциал для фундаментальной интуиции, мы смоделировали опорно-двигательный аппарат как систему точечных масс (костей) и пружин (мышц). Мы растянули мышечную пружину и наблюдали влияние этого возмущения на расположение всех остальных мышц. Физически, чтобы повредить мышцу, мы смещали все кости, связанные с этой мышцей, на одинаковую величину и в одном направлении, растягивая мышцу, и удерживали эти кости на новом месте. Этот процесс также математически эквивалентен простому изменению жесткости пружины, относящейся к конкретной мышечной пружине.Затем системе позволяли достичь равновесия. Мы зафиксировали кости по средней линии и по периферии в пространстве, чтобы предотвратить смещение системы. Чтобы количественно оценить влияние возмущения этой единственной мышечной пружины, мы определили движение узла следующим образом: где l ij — смещение между узлами i и j, x ij — невозмущенное расстояние между узлами i и j, m — масса узла (которую мы установили равной единице для всех узлов в сети) , β = 1 — коэффициент демпфирования, r i — положение узла i , A — взвешенная матрица смежности графа, ориентированного на кости, и S ij представляет собой сумму всех сил пружин мышцы, к которым подключены узлы i и j.Чтобы нормализовать восстанавливающую силу мышц на узлах, допустим силу пружины мышцы q 1 / (k — 1). Здесь мы установили, что все кости имеют одинаковый вес, а все мышцы имеют одинаковую жесткость пружины, что является упрощением реальной физической анатомии. Для обсуждения того, как учесть дополнительные физические свойства, такие как масса кости и мышечная сила, а также дополнительные результаты с использованием этих свойств, см. S5 Text. Более того, образцы траекторий, которые дают интуитивное представление о динамике нашей модели, были включены в вспомогательную информацию (S8 рис.).

Чтобы измерить потенциальную функциональную роль каждой мышцы в сети, мы растянули гиперребер мышцы и измерили влияние возмущения на остальную часть сети. Вместо того, чтобы возмущать сеть в каком-то произвольном трехмерном направлении, мы расширили объем нашей симуляции до четвертого измерения. При возмущении мышцы мы смещали все узлы (кости), содержащиеся в этом гиперребре мышцы, на постоянный вектор в четвертом измерении и удерживали их этим смещением (рис. 1d).Затем возмущение в ответ прокатилось по сети пружин. Мы последовательно растягивали каждую мышечную гиперреберь и определили оценку воздействия этого возмущения как общее расстояние, пройденное всеми узлами опорно-двигательного аппарата от их исходных положений. Величина смещения — это суммарное смещение по всем временным точкам, от начала возмущения до соответствующего отсечки времени уравновешивания. Здесь мы нашли равновесие системы, позволив динамике выровняться в течение достаточного периода времени.Обратите внимание, что равновесие также может быть решено с использованием стационарного, нединамического подхода; мы решили использовать динамику в этом случае для более широкой поддержки будущих приложений.

Отклонение оценки удара

Для каждой мышцы мы рассчитали индекс, который количественно определяет, насколько оценка воздействия этой мышцы отклоняется от ожидаемой с учетом степени ее гипергерметичности; мы называем этот показатель «ударным отклонением». Мы начинаем с построения нулевой модели, которая определяет ожидаемое воздействие при наборе статистических допущений.В текущем исследовании мы использовали несколько различных нулевых моделей с разными наборами допущений, которые мы подробно рассмотрим в следующих разделах. Отклонение воздействия рассчитывалось следующим образом: мы вычисляли среднее значение, стандартное отклонение и 95% доверительные интервалы (ДИ) для каждой из категорий степени нулевого гиперграфа из ансамбля из 100 нулевых гиперграфов. Расстояние от данной мышцы до среднего значения ± 95% доверительного интервала (в зависимости от того, что ближе всего) было вычислено и разделено на стандартное отклонение этого распределения степеней нулевого гиперграфа.Таким образом, мы рассчитали отклонение от ожидаемого значения в стандартных отклонениях (аналогично z-баллу). Таблица 1 содержит мышцы, которые лежат за пределами 95% ДИ коэффициентов отклонения относительно степени их гиперребер. Мышцы можно естественным образом сгруппировать в соответствии с гомункулом, грубым одномерным представлением того, как контрольные области мышц группируются в моторную кору. Для данной группы гомункулов мы рассчитали коэффициент отклонения как количество мышц с положительным отклонением, деленное на общее количество мышц в группе (таблица 2).

Таблица 1. Мышцы с большей или меньшей нагрузкой, чем ожидалось в модели нулевого гиперграфа.

Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения. Мышцы на правой стороне оказывают большее влияние, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартных отклонений превышает среднее значение, в порядке от наибольшего к наименьшему.В этой таблице показаны мышцы, которые имели наибольшую положительную и наибольшую отрицательную разницу в воздействии, по сравнению с контрольными группами подобранной степени.

https://doi.org/10.1371/journal.pbio.2002811.t001

Таблица 2. Категории гомункулов, у которых все мышцы члена оказывают большее влияние, чем ожидалось, или все меньше, чем ожидалось, по сравнению с нулевыми гиперграфами.

Категории слева полностью состоят из мышц с меньшим воздействием, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.Категории справа полностью состоят из мышц, оказывающих большее воздействие, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.

https://doi.org/10.1371/journal.pbio.2002811.t002

Обнаружение сообщества

Чтобы понять как функцию, так и контроль над опорно-двигательной системой, мы были заинтересованы в определении групп плотно связанных между собой мышц с использованием подхода, основанного на данных. Мы выполнили тип обнаружения сообщества, максимизируя функцию качества модульности, введенную Ньюманом [20]: где P ij — ожидаемый вес ребра в нулевой модели Ньюмана-Гирвана, узел i назначен сообществу g i , узел j назначен сообществу g j , а δ — дельта-функция Кронекера.Путем максимизации Q мы получили разделение узлов (мышц) на сообщества, так что узлы в одном сообществе были более плотно взаимосвязаны, чем ожидалось в сетевой нулевой модели (рис. 1b, справа).

Здесь мы также использовали параметр разрешения, чтобы настроить размер и количество обнаруженных сообществ, чтобы количество обнаруженных сообществ соответствовало количеству групп внутри гомункула для прямого сравнения. В частности, мы использовали параметр разрешения γ = 4,3, чтобы разделить мышечно-ориентированную матрицу на 22 сообщества (см. Таблицу S8).Мы начали с переопределения исходной ориентированной на мышцы матрицы B, следуя Jutla et al. [21]; мы положили k = Σ i B i , j , а затем мы применили локально жадный алгоритм максимизации модульности типа Лувена к скорректированной матрице [22].

Указанный выше метод обнаружения сообществ недетерминирован [23]. То есть одно и то же решение не будет достигнуто при каждом отдельном запуске алгоритма. Следовательно, необходимо убедиться, что используемые назначения сообщества хорошо представляют сеть, а не только локальный максимум ландшафта.Поэтому мы максимально увеличили функцию качества модульности в 100 раз, получив 100 различных заданий от сообщества. Из этого набора решений мы определили надежную репрезентативную консенсусную структуру сообщества [24]. S1 Рис. Показывает, как обнаруженные сообщества изменяются в зависимости от параметра разрешения для мышечно-ориентированной сети.

Сетевые нулевые модели

Мы используем перепрограммированные графики в качестве нулевой модели, с которой сравниваем эмпирические данные. В частности, мы построили нулевой гиперграф, перемонтировав мышцы, которым присвоена одна и та же категория (таблица 3, определенная ниже), равномерно и случайным образом.Таким образом, мышцы мизинца будут перестроены только внутри мизинца, и аналогично для мышц других категорий. Важно отметить, что этот метод также сохраняет степень каждой мышцы, а также степень распределения всего гиперграфа.

Категории были присвоены мышцам таким образом, чтобы общая топология опорно-двигательного аппарата была в значительной степени сохранена, а изменения были локализованы в пространстве. В частности, мы разделили мышцы на сообщества размером примерно 3, так что каждая мышца была сгруппирована с двумя мышцами, которые наиболее топологически связаны.Затем мы переставлялись только внутри этих небольших групп. Это управляемый данными способ изменения связей только внутри очень небольших групп связанных мышц.

Чтобы разделить мышцы на сообщества, мы применили жадный подход к максимизации модульности, аналогичный предыдущей работе [25]. В частности, мы максимизировали модульность системы, так что изменение модульности для перемещения узла n из сообщества c ‘в сообщество c определяется выражением Здесь H — матрица степени от узла к модулю, B ′ — скорректированная матрица, ориентированная на мышцы, а V — штрафной член, гарантирующий, что сообщества будут небольшими и примерно одинакового размера.Конкретно, где N — общее количество узлов в системе, c j — индикаторная переменная, кодирующая назначение сообществом узла j, а δ — дельта-функция Кронекера. Более того, где K обозначает общее количество сообществ. Этот термин наказывает определение набора сообществ, которые сильно различаются по размеру.

Многомерное масштабирование

Для проведения многомерного масштабирования (MDS) в сети, ориентированной на мышцы, взвешенная матрица смежности, ориентированная на мышцы, была упрощена до двоичной матрицы (все ненулевые элементы установлены равными 1).На основе этих данных была построена матрица расстояний D, элементы D ij которой равны длине кратчайшего пути между мышцами i и j, или равны 0, если пути не существует. Затем к этой матрице расстояний применяется MDS, чтобы получить ее первый главный компонент с помощью функции MATLAB cmdscale.m. Для построения бинарной матрицы был установлен порог 0, и все значения выше этого порога были преобразованы в 1. Однако, чтобы сделать анализ устойчивым к этому выбору, мы исследовали диапазон пороговых значений, чтобы убедиться, что результаты инвариантны относительно порог.Верхняя граница порогового диапазона была установлена ​​путем определения максимального значения, при котором будет поддерживаться полносвязная матрица; в противном случае матрица расстояний D имела бы элементы бесконечного веса. В нашем случае это значение составило 0,0556 × max (B ′). В пределах этого диапазона пороговых значений (т.е. для всех пороговых значений, приводящих к полностью связанным матрицам) результаты были качественно согласованными. В качестве дополнительного анализа мы также использовали метод построения матрицы расстояний из взвешенной матрицы смежности, чтобы исключить пороговую обработку (S5 Fig), и мы снова наблюдали качественно согласованные результаты.

Данные о мышечных травмах

Мы рассчитали корреляцию между оценкой удара и временем восстановления после мышечной травмы. Время восстановления после травм было собрано из литературы по спортивной медицине и включало травмы трехглавой мышцы плеча и плечевых мышц [26]; мышцы большого пальца [27]; latissimus dorsi и teres major [28]; двуглавая мышца плеча [29]; голеностопные мышцы [30]; мышцы шеи [31]; мышцы челюсти [32]; мышцы бедра [33]; мышцы глаз / век [34]; и мышцы колена [35], локтя [36] и запястья / кисти [37].Время восстановления и соответствующие ссылки, перечисленные в таблице 4, представляют собой среднее время восстановления, полученное в результате популяционных исследований. Если в литературе сообщается о диапазоне различных уровней тяжести и связанных с ними сроков восстановления для конкретной травмы, выбирался наименее тяжелый уровень. Если травма была зарегистрирована для группы мышц, а не для одной мышцы, отклонение оценки удара для этой группы усреднялось вместе. Точки данных для групп мышц были взвешены в соответствии с количеством мышц в этой группе с целью линейной подгонки.Подгонка была произведена с использованием функции MATLAB, fitlm.m, с параметром «Robust», установленным на «on». Устойчивая регрессия — это метод регрессии, разработанный, чтобы быть менее чувствительным к выбросам в данных, в котором выбросы имеют пониженный вес в регрессионной модели.

Данные области соматотопической репрезентации

Мы рассчитали корреляцию между отклонением оценки воздействия и площадью соматотопической репрезентации, относящейся к определенной группе мышц. Ареалы представительства были собраны из двух отдельных источников [38,39].Объемы и соответствующие ссылки перечислены в Таблице 5. В обоих исследованиях испытуемых просили повторно сформулировать сустав, и были записаны объемы областей первичной моторной коры, которые претерпели наибольшие изменения в BOLD-сигнале. Затем мы рассчитали коэффициент корреляции между объемами коры и средним воздействием всех мышц, связанных с этим суставом, как определено в таблицах Hosford Muscle. Мы обнаружили значительную линейную корреляцию между двумя показателями с помощью функции MATLAB, fitlm.м, при этом для параметра «Надежность» установлено значение «Вкл.».

Результаты

Структура опорно-двигательного аппарата человека

Чтобы изучить структурные взаимосвязи опорно-двигательного аппарата человека, мы использовали подход гиперграфа. Основываясь на последних достижениях сетевой науки [5], мы исследовали опорно-двигательную систему как сеть, в которой кости (сетевые узлы) соединены друг с другом мышцами (сетевые гиперребра). Гиперребро — это объект, соединяющий несколько узлов; мышцы соединяют несколько костей через точки начала и вставки.Степень гиперребра k равна количеству узлов, которые оно соединяет; таким образом, степень мышцы — это количество костей, с которыми она контактирует. Например, трапеция — это гиперребро высокой степени, которое связывает 25 костей лопатки и позвоночника; Напротив, приводящая мышца большого пальца представляет собой гиперребро низкой степени, которое соединяет 7 костей руки (Рис. 2a и 2b). Набор гиперребер (мышц) с общими узлами (костями) называется гиперграфом: граф H = (V, E) с N узлами и M гиперребрами, где V = {v 1 , …, v N } — это набор узлов, а E = {e 1 , …, e M } — набор гиперребер.

Рис. 2. Структура гиперграфа.

(a) Слева: анатомический рисунок трапеции. Справа: преобразование трапеции в гиперребро (красный; степень k = 25), соединяющее 25 узлов (костей) на голове, плече и позвоночнике. (b) Приводящая мышца большого пальца, соединяющая 7 костей руки. (в) Пространственная проекция распределения степеней гиперребер на тело человека. Гиперребра высокой степени наиболее сильно сконцентрированы в ядре. (d) Скелетно-мышечная сеть отображается в виде двудольной матрицы (1 = соединена, в противном случае 0).(e) Распределение степени гиперребра для гиперграфа опорно-двигательного аппарата, которое значительно отличается от ожидаемого в случайном гиперграфе. Данные доступны для (e) в DOI : 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.g002

Представление опорно-двигательного аппарата человека в виде гиперграфа облегчает количественную оценку его структуры (рис. 2c). Мы заметили, что распределение степени гипреберья является тяжелым: большинство мышц связывают 2 кости, а несколько мышц связывают многие кости (рис. 2d и 2e).Наклон распределения степеней существенно отличается от случайных сетей (двухвыборочный критерий Колмогорова-Смирнова, KS = 0,37, p <0,0001, см. Материалы и методы) [5], что свидетельствует о наличии мышц неожиданно низкой и высокая степень (рис. 2д).

Функция опорно-двигательного аппарата человека

Чтобы исследовать функциональную роль мышц в опорно-двигательном аппарате, мы использовали упрощенную модель опорно-двигательного аппарата и попытались выяснить, может ли эта модель генерировать полезные клинические корреляты.Мы реализовали физическую модель, в которой кости образуют основной каркас тела, а мышцы скрепляют эту структуру. Каждый узел (кость) представлен как масса, пространственное расположение и движение которой физически ограничены гиперребрами (мышцами), с которыми он связан. В частности, кости — это точки, расположенные в их центре масс, заимствованные из текстов по анатомии [19], а мышцы — это пружины (затухающие гармонические осцилляторы), соединяющие эти точки [40,41]; для гиперребра степени k мы создали k (k — 1) / 2 пружин, соединяющих k узлов.То есть для мышцы, соединяющей k костей, мы разместили пружины так, чтобы каждая из k мышц имела прямое пружинное соединение с каждой из других k — 1 костей.

Затем мы взволновали каждую из 270 мышц тела и вычислили их оценку воздействия в сети (см. Материалы и методы и рис. 1c и 1d). Когда мышца физически смещается, она вызывает волнообразное смещение других мышц по всей сети. Оценка удара мышцы — это среднее смещение всех костей (и косвенно мышц) в результате его первоначального смещения.Мы наблюдали значительную положительную корреляцию между степенью мышц и оценкой воздействия (F (1,268) = 23,3, R 2 = 0,45, p <0,00001; рис. 3a), предполагая, что структура гиперребра определяет функциональную роль мышц в опорно-двигательном аппарате. сеть. Мышцы с большим количеством точек прикрепления и начала имеют большее влияние на опорно-двигательную систему при возмущении, чем мышцы с небольшим количеством точек прикрепления и начала [42]. Мы можем получить более подробное представление о результатах этого анализа, подробно изучив взаимосвязь между оценкой воздействия и статистическими показателями топологии сети.На рис. S11 мы показываем, что функция сети, измеренная с помощью оценки воздействия, значительно коррелировала со средней длиной кратчайшего пути. Хотя сетевая статистика статична по своей природе, их функциональная интерпретация обеспечивается пертурбативным моделированием динамики системы.

Рис. 3. Исследование функции опорно-двигательного аппарата.

(a) Оценка удара, построенная как функция степени гиперребра для модели нулевого гиперграфа и наблюдаемого гиперграфа опорно-двигательного аппарата.(b) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,12) = 37,3, R 2 = 0,757, p <0,0001). Заштрихованные области указывают 95% доверительный интервал, а точки данных масштабируются в соответствии с количеством включенных мышц. График пронумерован следующим образом, что соответствует таблице 4: трицепс (1), большой палец (2), широчайшая мышца спины (3), двуглавая мышца плеча (4), голеностопный сустав (5), шея (6), челюсть (7), плечо. (8), большая круглая (9), бедро (10), глазные мышцы (11), колено (12), локоть (13), запястье / кисть (14). Данные доступны в DOI : 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.g003

В качестве руководства для интерпретации важно отметить, что оценка воздействия, хотя и значительно коррелирует со степенью мышечной массы, не полностью с ее помощью (рис. 3а). . Вместо этого структура локальной сети, окружающей мышцу, также играет важную роль в ее функциональном воздействии и способности восстанавливаться. Чтобы лучше количественно оценить влияние этой структуры локальной сети, мы спросили, существуют ли мышцы, которые имели значительно более высокие или значительно более низкие оценки воздействия, чем ожидалось в нулевой сети.Мы определили положительное (отрицательное) отклонение оценки воздействия, которое измеряет степень, в которой мышцы более (менее) воздействуют, чем ожидалось в сетевой нулевой модели (см. Материалы и методы). В результате этого расчета был получен показатель, который выражает влияние конкретной мышцы по сравнению с мышцами с идентичной степенью гиперребер в нулевой модели. Другими словами, этот показатель учитывает сложность конкретной мышцы (Таблица 1).

Является ли эта математическая модель клинически актуальной? Отвечает ли тело по-разному на травмы мышц с более высокой оценкой удара, чем на мышцы с более низкой оценкой удара? Чтобы ответить на этот вопрос, мы оценили потенциальную взаимосвязь между воздействием на мышцы и временем восстановления после травмы.В частности, мы собрали данные о спортивных травмах и времени между получением травмы и возвращением в спорт. Важно отметить, что мы наблюдали, что время восстановления сильно коррелировало с отклонениями оценки удара отдельной мышцы или группы мышц (F (1,12) = 37,3, R 2 = 0,757, p <0,0001; рис. 3b), что позволяет предположить что наша математическая модель предлагает полезный клинический биомаркер реакции сети на повреждение. Мы отмечаем, что важно учитывать тот факт, что восстановление может быть медленнее у человека, которому требуются максимальные усилия в спортивном спорте, по сравнению с человеком, который стремится только функционировать в повседневной жизни.Поэтому, чтобы обобщить наши результаты на всю популяцию, мы также изучили данные о времени восстановления, полученные от не спортсменов, и представляем эти дополнительные результаты во вспомогательной информации (текст S6).

Наконец, чтобы получить интуитивное представление о том, как очаговая травма может вызывать отдаленные эффекты, потенциально замедляющие восстановление, мы рассчитали влияние мышц голеностопного сустава и определили, какие другие мышцы были затронуты сильнее всего. То есть для каждой отдельной мышцы голеностопного сустава мы рассчитали воздействие на каждую из оставшихся 264 мышц, не относящихся к голеностопному суставу, а затем усреднили его по всем мышцам голеностопного сустава.Из 264 мышц, не связанных с голеностопным суставом, единственная мышца, на которую больше всего воздействует нарушение мышц голеностопного сустава, — это двуглавая мышца бедра, а второй по величине — латеральная широкая мышца бедра колена. Кроме того, мышца бедра, на которую больше всего влияет нарушение, — это камбаловидная мышца.

Контроль опорно-двигательного аппарата человека

Какая связь между функциональным воздействием мышцы на тело и нейронной архитектурой, которая влияет на контроль? Здесь мы исследуем взаимосвязь между опорно-двигательной системой и первичной моторной корой.Мы исследовали область карты коркового представления головного мозга, посвященную мышцам с низким или высоким воздействием, опираясь на анатомию моторной полосы, представленной в моторном гомункуле [43] (рис. 4a), грубое одномерное представление тела в головном мозге. [44]. Мы наблюдали, что области гомункула по-разному контролируют мышцы с положительной и отрицательной оценкой отклонения воздействия (таблица 2). Более того, мы обнаружили, что области гомункула, контролирующие только положительно (отрицательно) отклоняющиеся мышцы, как правило, располагаются медиально (латерально) на моторной полосе, что предполагает наличие топологической организации ожидаемого воздействия мышцы на нервную ткань.Чтобы исследовать эту закономерность более глубоко, для каждой области гомункула мы рассчитали коэффициент отклонения как процент мышц, которые положительно отклонились от ожидаемой оценки воздействия (т. Е. Значение 1 для бровей, глаз, лица и значение 0 для колена , бедро, плечо; см. Таблицу 2). Мы обнаружили, что коэффициент отклонения достоверно коррелировал с топологическим положением на моторной полосе (F (1,19) = 21,3, R 2 = 0,52, p <0,001; рис. 4b).

Рис. 4. Зондирование опорно-двигательного аппарата.

(а) Гомункул первичной моторной коры, построенный Пенфилдом. (b) Коэффициент отклонения значительно коррелирует с гомункулярной топологией (F (1,19) = 21,3, R 2 = 0,52, p <0,001), уменьшаясь от медиального (область 0) к латеральному (область 22). (c) Отклонение оценки воздействия достоверно коррелирует с объемом активации моторной полосы (F (1,5) = 14,4, R 2 = 0,743, p = 0,012). Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения.График пронумерован следующим образом, что соответствует таблице 5: большой палец (1), указательный палец (2), средний палец (3), кисть (4), все пальцы (5), запястье (6), локоть (7). (d) Корреляция между пространственным упорядочением категорий гомункулов Пенфилда и линейной мышечной координатой из многомерного масштабного анализа (F (1,268) = 316, R 2 = 0,54, p <0,0001). Данные доступны в DOI : 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.g004

В качестве более строгой проверки этой взаимосвязи между воздействием мышцы на сеть и нейронной архитектурой мы сопоставили данные о физических объемах функциональной активации на основе МРТ на моторной полосе, которые предназначены для отдельных движений (например, , сгибание пальцев или моргание глаз). Объемы активации определяются как вокселы, которые активируются (определяемые сигналом, зависящим от уровня кислорода в крови) во время движения [38,39]. Важно отметить, что мы обнаружили, что объем функциональной активации независимо предсказывает отклонение оценки удара мышц (рис. 4c, F (1,5) = 14.4, p = 0,012, R 2 = 0,743), что согласуется с интуицией, что мозг будет уделять больше места в сером веществе контролю над мышцами, которые более эффективны, чем ожидалось в нулевой модели. Опять же, отклонение от удара — это показатель, который учитывает степень гиперребер конкретной мышцы и относится к удару мышц с идентичной степенью гиперребер в нулевой модели. Таким образом, ударное отклонение измеряет топологию локальной сети, а не просто непосредственные соединения рассматриваемой мышцы.

В качестве последнего теста этой взаимосвязи мы спросили, оптимально ли сопоставлена ​​стратегия нервного контроля, воплощенная в моторной полоске, с группами мышц. Мы построили мышечно-ориентированный график, соединив две мышцы, если они касаются одной и той же кости (рис. 1c, слева). Мы наблюдали наличие групп мышц, плотно связанных друг с другом, имеющих общие кости. Мы извлекли эти группы, используя метод кластеризации, разработанный для сетей [45,46], который обеспечивает разделение мышц на сообщества на основе данных (рис. 1b, справа).Чтобы сравнить структуру сообщества, присутствующую в мышечной сети, с архитектурой системы нейронного контроля, мы рассмотрели каждую из 22 категорий в моторном гомункуле [18] как отдельное нейронное сообщество и сравнили эти задания сообщества на основе мозга с заданиями сообщества. полученный из управляемого данными раздела мышечной сети. Используя коэффициент Рэнда [47], мы обнаружили, что распределение сообществ как для гомункула, так и для мышечной сети было статистически схожим (z Rand > 10), что указывает на соответствие между модульной организацией опорно-двигательного аппарата и структурой гомункула.Например, трицепс плеча и двуглавая мышца плеча принадлежат к одной гомункулярной категории, и мы обнаружили, что они также принадлежат к одному и тому же сообществу топологических мышечных сетей.

Затем, поскольку гомункулус имеет линейную топологическую организацию, мы спросили, был ли порядок сообществ внутри гомункула (Таблица 3) подобен управляемому данными упорядочению групп мышц в теле, как определено с помощью MDS [48]. Из сети, ориентированной на мышцы (рис. 1b), мы получили матрицу расстояний, которая кодирует наименьшее количество костей, которые необходимо пройти, чтобы перейти от одной мышцы к другой.MDS этой матрицы расстояний выявил одномерные линейные координаты для каждой мышцы, так что топологически близкие мышцы были близко друг к другу, а топологически далекие мышцы были далеко друг от друга. Мы заметили, что линейная координата каждой мышцы значительно коррелирует с ее категорией гомункула (рис. 4d, F (1,268) = 316, p <0,0001, R 2 = 0,54), что указывает на эффективное отображение между нейронным представлением мышцы. система и сетевая топология мышечной системы тела.

Наши результаты на рис. 4d демонстрируют соответствие между топологией гомункула и управляемым данными упорядочением мышц, полученным с учетом топологических расстояний между ними. Этот результат можно интерпретировать одним из двух способов: одна разумная гипотеза состоит в том, что, поскольку большинство соединений в опорно-двигательной сети являются короткодействующими, открытие в основном обусловлено связями ближнего действия. Вторая разумная гипотеза состоит в том, что, хотя соединения ближнего действия являются наиболее распространенными, соединения дальнего действия образуют важные внутримодульные связи, которые помогают определять организацию сети.Чтобы выбрать между этими двумя гипотезами, мы рассмотрели два варианта нашего эксперимента MDS: один включает только соединения, длина которых меньше средней длины соединения, а другой — только соединения, длина которых превышает среднюю длину соединения. Мы обнаружили, что упорядочение на основе данных, полученное только из коротких и только длинных соединений, привело к значительным корреляциям с гомункулярной топологией (F (1,268) = 24,9, R 2 = 0,085, p <0,0001 и F (1,268). = 5, R 2 = 0.018, p = 0,026 соответственно). Примечательно, что включение как длинных, так и коротких соединений приводит к более сильной корреляции с гомункулярной топологией, чем рассмотрение любого из них независимо, что предполагает зависимость от соединений любой длины. В будущем было бы интересно проверить, в какой степени эта межсетевая карта изменяется у людей с двигательными нарушениями или изменениями после инсульта.

Обсуждение

Структура опорно-двигательного аппарата человека

Представляя сложную взаимосвязь опорно-двигательного аппарата в виде сети костей (представленных узлами) и мышц (представленных гиперребрами), мы получили ценную информацию об организации человеческого тела.Изучение анатомических сетей с использованием аналогичных методов становится все более распространенным в области эволюционной биологии и биологии развития [10]. Однако этот подход обычно применялся только к отдельным частям тела, включая руку [49], голову [11] и позвоночник [12], тем самым предлагая понимание того, как развивалась эта часть организма [50, 51]. Более того, даже после моделирования всей мускулатуры тела [13] и нервно-мышечно-скелетной системы [14] в более общем плане некоторые количественные утверждения могут остаться неуловимыми, во многом из-за отсутствия математического языка, на котором можно было бы обсуждать сложность взаимосвязи узоры.В этом исследовании мы предлагаем явное и экономное представление всей опорно-двигательной системы в виде графа узлов и ребер, и это представление позволило нам точно охарактеризовать сеть в целом.

При моделировании системы как сети важно начать последующее исследование с характеристики нескольких ключевых архитектурных свойств. Одним из наиболее фундаментальных показателей структуры сети является ее распределение по степеням [52], которое описывает неоднородность подключения узла к его соседям таким образом, который может дать представление о том, как формировалась система [7].Мы заметили, что степень распределения опорно-двигательного аппарата значительно отличается от ожидаемого в нулевом графе (рис. 2e), показывая меньше узлов высокой степени и переизбыток узлов низкой степени. Несоответствие между графами реальной и нулевой модели согласуется с тем фактом, что опорно-двигательная система человека развивается в контексте физических и функциональных ограничений, которые вместе определяют ее явно неслучайную архитектуру [53]. Распределение степеней этой сети показывает пик примерно на второй степени, за которым следует относительно тяжелый хвост узлов высокой степени.Последняя особенность обычно наблюдается во многих типах реальных сетей [54], чьи концентраторы могут быть дорогостоящими в разработке, обслуживании и использовании [55,56], но играют критическую роль в надежности системы, обеспечивая быстрое реагирование [55], буферизация изменчивости окружающей среды [57] и облегчение выживания и воспроизводства [58]. Первая особенность — пик распределения — согласуется с интуицией, что большинство мышц опорно-двигательного аппарата соединяются только с двумя костями, главным образом для функции простого сгибания или разгибания в суставе.Напротив, есть только несколько мышц, которые требуют высокой степени для поддержки очень сложных движений, таких как поддержание выравнивания и угла позвоночника за счет одновременного управления движением многих костей. Эти ожидаемые результаты обеспечивают важную проверку модели, а также предлагают полезную визуализацию опорно-двигательного аппарата.

Скелетно-мышечная сеть характеризуется особенно интересным свойством, которое отличает ее от нескольких других реальных сетей: тем фактом, что она встроена в трехмерное пространство [59].Это свойство не наблюдается в семантических сетях [60] или World Wide Web [61], которые кодируют отношения между словами, концепциями или документами в некоторой абстрактной (и, скорее всего, неевклидовой) геометрии. Напротив, опорно-двигательная система представляет собой объем с узлами, имеющими определенные координаты, и краями, представляющими физически протяженные ткани. Чтобы лучше понять физическую природу скелетно-мышечной сети, мы исследовали анатомическое расположение мышц с разной степенью (рис. 2c).Мы заметили, что мышечные центры расположены преимущественно в торсе, обеспечивая плотную структурную взаимосвязь, которая может стабилизировать ядро ​​тела и предотвратить травмы [62]. В частности, мышцы высокой степени группируются вокруг средней линии тела, рядом с позвоночником, вокруг таза и плечевого пояса, что согласуется с представлением о том, что для маневренности и устойчивости этих областей требуется совокупность мышц с различной геометрией и свойствами тканей [63 ]. Действительно, мышцы в этих местах должны поддерживать не только сгибание и разгибание, но также отведение, приведение и внутреннее и внешнее вращение.

Важно отметить, что в костно-мышечной системе у разных людей существуют значительные различия, и не все анатомические атласы согласуются с наиболее репрезентативным набором точек вставки и происхождения. Представленные здесь результаты отражают то, как опорно-двигательная система была представлена ​​в тексте, из которого она была построена [19], и, следовательно, обеспечивают только одно возможное сетевое представление опорно-двигательной системы. Чтобы оценить надежность наших результатов при разумных вариациях конфигурации опорно-двигательного аппарата, мы создали вторую опорно-двигательную сеть из альтернативного атласа [64].Используя этот второй атлас, мы наблюдали последовательные результаты и сообщаем об этом дополнительном анализе в S3 Text.

Также важно отметить, что мы сопоставили первый атлас [19] в скелетно-мышечный граф, состоящий как из костных, так и не костных узлов. Этот выбор уравнивает структурные роли костей и определенных сухожилий и связок, что, по общему признанию, является упрощением биологии. Одним из оправданий этого упрощения является то, что некостные структуры часто служат важными точками прикрепления мышц (т.э., подошвенная фасция стопы). Таким образом, разумно разделить опорно-двигательную сеть на две категории мышц и структур, которые служат точками прикрепления мышц, как мы это сделали здесь. Тем не менее, эта вторая категория довольно неоднородна по составу, и в будущей работе можно было бы также рассмотреть возможность построения многослойного графа с отдельным слоем, учитывающим каждый тип структуры мышечного прикрепления. Чтобы подтвердить, что наши выводы и интерпретации не претерпевают значительных изменений из-за наличия некостных мышечных точек прикрепления, мы удалили такие точки в альтернативном атласе и отметили, что наши основные результаты все еще остаются в силе (см. Текст S3).

Функция опорно-двигательного аппарата человека

Чтобы лучше понять функциональную роль отдельной мышцы во взаимосвязанной опорно-двигательной системе, мы реализовали основанную на физике модель свойств импульсной реакции сети, кодируя кости как точечные массы и мышцы как пружины [65]. Примечательно, что эта очень упрощенная модель опорно-двигательного аппарата способна идентифицировать важные функциональные особенности. Хотя мышцы высокой степени также имели тенденцию иметь большое влияние на реакцию сети (рис. 3а), было несколько заметных отклонений от этой тенденции (таблица 1).

Мышца, оказывающая наименьшее воздействие по сравнению с ожидаемой, — это orbicularis oculi, мышца, используемая для управления движением века. Эта мышца небольшая и относительно изолированная в теле, берут начало и прикрепляются к костям черепа. Мышцы лица в целом образуют плотное и изолированное сообщество, с немногими связями, выходящими за пределы этого сообщества. Эти факторы, вероятно, способствуют слабому воздействию этой мышцы, и аналогичный аргумент может быть сделан в отношении оставшихся двух мышц с меньшим воздействием, чем ожидалось, которые также являются мышцами лица.

Мышцы с большей нагрузкой, чем ожидалось, более многочисленны, но почти полностью расположены в верхней конечности или поясе верхней конечности. Длинный разгибатель запястья, anconeus, brachioradialis и brachialis мышцы — все внутренние мышцы руки, последние три действуют в локтевом суставе. Все эти мышцы могут иметь более сильное воздействие, чем ожидалось в нулевой модели, потому что они могут прямо или косвенно влиять на движение многих костей запястья и кисти. Наблюдаемое сильное воздействие этих мышц может быть результатом того факта, что они контролируют движение конечности, а на конце конечности находится множество костей, движение которых напрямую зависит от этих мышц.Остальные ударные мышцы, за исключением грушевидной мышцы, прикрепляют верхнюю конечность к осевому скелету. Этими мышцами являются коракобрахиальная, подостная, надостная, подлопаточная, малая круглая, большая круглая и большая грудная мышцы. Эти мышцы, как и предыдущие четыре, обладают тем свойством, что они контролируют движение всей конечности, что, вероятно, способствует их влиянию. В отличие от предыдущей группы, эти мышцы также соединяются с осевым скелетом, что также может усиливать их воздействие.Многие из этих мышц берут свое начало на костях плечевого пояса и могут влиять на все другие мышцы плечевого пояса и, возможно, на все кости, связанные с этими мышцами. Такая же динамика, вероятно, существует в нижней конечности, что отражается наличием грушевидной мышцы тазового пояса. Подробное обсуждение того, как структура локальной сети и конфигурация мышц могут взаимодействовать с отклонением от удара, представлено в S7 Text. В дополнение к нашей работе, представленной во вспомогательной информации, дальнейшее понимание свойств этих выбросов может быть получено путем проведения экспериментов по тщательному изучению костей, на которые сильнее всего воздействует каждая из этих мышц.

Хотя сетевое представление системы может дать базовую физическую интуицию благодаря своей скупости и простоте, оно также остается независимым от многих деталей архитектуры и функций системы. Извечный вопрос, могут ли эти базовые модели сложных систем обеспечить точные прогнозы реальных результатов. Мы рассмотрели этот вопрос, изучив взаимосвязь между оценкой удара мышцы и количеством времени, которое требуется человеку для восстановления после травмы.Мы количественно оценили время восстановления, суммируя (i) время восстановления после первичной инвалидности, вызванной первоначальным мышечным повреждением, и (ii) время восстановления после любых вторичных нарушений, вызванных изменением использования других мышц в сети из-за первоначального травма мышц [66]. Мы обнаружили, что отклонение от ожидаемой оценки воздействия в нулевой сети значительно коррелировало со временем выздоровления (рис. 3b), подтверждая идею о том, что очаговая травма может оказывать длительное воздействие на организм из-за изначально взаимосвязанной природы опорно-двигательной системы.

Действительно, известно, что мышечные изменения в одной части тела влияют на другие группы мышц. Например, укрепление мышц бедра может привести к улучшению функции колена после замены коленного сустава [67]. Изменение мышечной функции в голеностопном суставе после растяжения связок может вызвать изменение функции мышц бедра [68,69], результат, воспроизведенный нашей моделью (которая показала, что двуглавая мышца бедра и латеральная широкая мышца бедра больше всего пострадали от травмы лодыжки), а повреждение мышц конечностей может приводят к вторичному повреждению диафрагмы [70].Наша модель предлагает математически принципиальный способ предсказать, какие мышцы с большей вероятностью будут иметь такое вторичное влияние на более крупную опорно-двигательную систему, а какие мышцы подвержены риску вторичного повреждения, учитывая первичное повреждение в определенном участке мышцы. В будущем было бы интересно проверить, могут ли эти прогнозы повлиять на полезные корректировки клинических вмешательств, явно принимая во внимание риск вторичного повреждения определенных мышц. Ранее профилактика вторичных мышечных травм в основном сводилась к криотерапии [71,72] и еще не была мотивирована такой механистической моделью.Наконец, важный вопрос, который следует задать, заключается в том, насколько эта конфигурация опорно-двигательного аппарата является эволюционной выгодной и как эволюционное давление могло оптимизировать воздействие на мышцы. Интуитивно можно было ожидать, что эволюционное давление снижает мышечную нагрузку, возможно, за счет увеличения мышечной избыточности. Тщательное исследование эволюционных преимуществ топологии костно-мышечной сети было бы интересной темой для будущей работы.

Контроль опорно-двигательного аппарата человека

Учитывая сложность костно-мышечной сети и ее критическую роль в выживании человека, естественно задать вопросы о том, как эта сеть управляется человеческим мозгом.Действительно, изучение моторного контроля имеет долгую и яркую историю [73], которая дала важную информацию о том, как мозг может успешно и точно совершать произвольные движения, несмотря на такие проблемы, как избыточность, шум [74], задержки сенсорной обратной связи. [75], неопределенность окружающей среды [76], нервно-мышечная нелинейность [77] и нестационарность [78]. Здесь мы взяли отличный, но дополняющий подход и спросили, как топология скелетно-мышечной сети может быть отображена на топологии моторной полосы в коре головного мозга.Мы начали с того, что отметили, что ударное отклонение мышцы положительно коррелирует с размером коркового объема, предназначенного для его контроля (рис. 4c). Одна из интерпретаций этой взаимосвязи состоит в том, что те мышцы, которые своими непосредственными связями оказывают большее влияние, чем ожидалось в нулевой модели, имеют тенденцию контролировать более сложные движения и, следовательно, требуют большего количества нейронов для управления этими движениями [79]. Вторая интерпретация основана на эволюционном аргументе о том, что мышцы с большей нагрузкой нуждаются в большей избыточности в их системах управления [80], и эта избыточность принимает форму большей корковой области.

Не говоря уже о локальных объемах коры [81], можно также захотеть понять, в какой степени крупномасштабная организация опорно-двигательного аппарата отражает организацию контролирующей ее моторной полосы. Основываясь на недавнем применении методов выявления сообществ к изучению анатомии черепа [11,82,83], мы сообщили о модульной организации мышечной сети: группы мышц, в которых мышцы одной группы с большей вероятностью соединяются с одной. кроме мышц в других группах.Что еще более интересно, мы заметили, что сообщества мышц очень похожи на известные группы мышц моторной полосы (рис. 1b, справа): мышцы, которые имеют тенденцию соединяться с теми же костями, что и друг друга, также, как правило, контролируются одной и той же частью моторной полосы. . Более того, естественное линейное упорядочение мышечных сообществ — такое, что сообщества располагаются близко друг к другу на линии, если они имеют общие сетевые соединения — имитирует порядок контроля в моторной полосе (Рис. 4d). Эти результаты дополняют важную предыдущую работу, предполагающую, что одномерная организация моторной полосы связана как со структурной, так и со функциональной организацией скелетно-мышечной сети [84,85].Фактически, результаты более конкретно предлагают определение оптимального сетевого управления на уровне сети: согласованность линейной карты от сообществ опорно-двигательного аппарата до сообществ моторных полос.

Наконец, мы исследовали физические места коркового контроля пораженных мышц. Мы заметили, что мышцы с большим воздействием, чем ожидалось, при нулевом графике, как правило, контролируются медиальными точками на моторной полосе, в то время как мышцы с меньшим воздействием, чем ожидалось, обычно контролируются боковыми точками на моторной полосе (рис. 4b).Эта пространственная специфика указывает на то, что организация моторной полосы ограничивается физическим расположением тела, а также аспектами функционирования мышц. Предыдущие исследования изучали общее временное соответствие между корковой активностью и мышечной активностью во время движения [86], но мало что известно о топологическом соответствии.

Методологические соображения

Построение гиперграфа на основе опорно-двигательного аппарата человека требует допущений и упрощений, влияющих на гибкость текущей модели.Наиболее заметным является разделение системы на две категории: мышцы и кости. Эти категории не содержат дополнительной информации и, следовательно, не учитывают особенности внутренней архитектуры мышцы или кости. Это упрощение вводит несколько ограничений для пертурбативной модели, включая возможность моделирования функциональной архитектуры сложных мышц или мышц, обладающих способностью независимо сокращать подмножество волокон. Например, двуглавая двуглавая мышца плеча берет начало как на лопатке, так и на супрагленоидном бугорке, и можно сокращать волокна одной головки отдельно от волокон другой головки.Дальнейшая работа может расширить нашу структуру моделирования, чтобы представить эту сложную функциональную архитектуру. Более того, немышечные структуры мягких тканей, важные для опорно-двигательного аппарата, не могут быть четко учтены. Эти структуры, включая сухожилия и связки, могут быть либо (1) закодированы как кости, как в основной текстовой сети, либо (2) исключены из сети, как в приложении; ни один из вариантов не является полностью анатомически точным.

В случае костей модель не может учесть взаимодействия кость-кость (суставы).Большинство мышц действуют на суставы, и исключение суставов затемняет специфическую функцию мышц. То есть модель учитывает тот факт, что мышцы перемещают кости, но не то, как они движутся или в каком направлении. В пертурбативном моделировании отсутствие ограничений на суставы позволяет размещать кости под неестественными углами относительно соседних костей. Кроме того, кости моделируются как точечные массы, которые в пертурбативном моделировании могут позволить костям проходить траектории, связанные с прохождением через пространство, которое на самом деле занято другой костью.Дальнейшая работа может расширить нашу структуру моделирования, чтобы учесть эти дополнительные биофизические ограничения.

Выводы, полученные с помощью этой модели, являются результатом входных данных. Поскольку индивидуальные вариации существуют в опорно-двигательном аппарате, они также существуют и в мышечных воздействиях. Мы попытались использовать два набора входных данных, чтобы оправдать наши основные выводы, но эти результаты не могут быть обобщены на все здоровые конфигурации опорно-двигательного аппарата. В частности, степень мышц, подверженная индивидуальным изменениям, может повлиять на воздействие этой мышцы.Каким образом нормативные индивидуальные вариации в степени мышечной массы связаны с вариациями прогнозируемого воздействия на мышцы, является важным вопросом, который, тем не менее, выходит за рамки настоящего исследования.

Наконец, опорно-двигательный аппарат человека представляет собой сложную и плотно взаимосвязанную сеть. Ни мышцы, ни кости не функционируют как независимые образования. Таким образом, трудно отделить функцию отдельной мышцы от воздействия окружающих мышц. Независимость мышц может быть частично устранена путем выбора соответствующей нулевой модели, и наши результаты остаются в силе при различных вариантах выбора.Тем не менее, при интерпретации этих результатов следует учитывать представление о том, что мышцы — и факторы воздействия — не являются действительно независимыми.

Заключение

Таким образом, здесь мы разработали новое сетевое представление опорно-двигательного аппарата, построили структуру математического моделирования для прогнозирования восстановления и подтвердили этот прогноз с данными, полученными при спортивных травмах. Более того, мы напрямую связали сетевую структуру опорно-двигательного аппарата с организацией корковой архитектуры, предполагая эволюционное давление для оптимального сетевого контроля над телом.Мы сравнили структуру, функции и контроль опорно-двигательного аппарата человека с нулевой системой, в которой небольшие группы тесно связанных мышц переплетаются друг с другом. Наши результаты предполагают, что структура, функции и контроль опорно-двигательного аппарата возникают из очень детализированной мелкомасштабной организации, а когда эта мелкая организация разрушается, появляются новые черты. Наша работа напрямую мотивирует будущие исследования, чтобы проверить, можно ли достичь более быстрого восстановления, не только сосредоточив реабилитацию на первичной травме, но и направив усилия на мышцы, на которые воздействует основная мышца.Кроме того, наша работа поддерживает разработку прогностической структуры для определения степени скелетно-мышечных последствий поражения первичной моторной коры головного мозга. Наши результаты являются важным шагом в сетевой науке в клинической медицине [87]. Наши результаты позволяют уменьшить вторичные травмы и ускорить выздоровление.

Вспомогательная информация

S1 Таблица. Мышцы с большей или меньшей нагрузкой, чем ожидалось в случайно перестроенных гиперграфах.

Эта нулевая модель потребовала случайной перестройки мускулов внутри гиперграфа с сохранением степени.Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения. Мышцы на правой стороне оказывают большее воздействие, чем ожидалось, учитывая степень их гипреберья: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение, в порядке от наибольшего к наименьшему. В этой таблице показаны мышцы, которые имели наибольшую положительную и наибольшую отрицательную разницу в воздействии, по сравнению с контрольными группами подобранной степени.

https://doi.org/10.1371/journal.pbio.2002811.s008

(XLSX)

S2 Таблица. Категории гомункулов, мышцы-члены которых либо все оказывают большее влияние, чем ожидалось, либо все оказывают меньшее влияние, чем ожидалось, по сравнению со случайно перестроенными гиперграфами.

Эта нулевая модель потребовала случайной перестройки мускулов внутри гиперграфа с сохранением степени. Категории слева полностью состоят из мышц с меньшим воздействием, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.Категории справа полностью состоят из мышц, оказывающих большее воздействие, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.

https://doi.org/10.1371/journal.pbio.2002811.s009

(XLSX)

S3 Таблица. Мышцы с большей или меньшей нагрузкой, чем ожидалось в гиперграфах, случайным образом перестраивались в рамках своей категории гомункулов.

Эта нулевая модель требовала случайной перестройки мускулов в пределах их категории гомункула, сохраняя степень. Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие больше единицы.96 стандартных отклонений ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения. Мышцы на правой стороне оказывают большее воздействие, чем ожидалось, учитывая степень их гипреберья: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение, в порядке от наибольшего к наименьшему. В этой таблице показаны мышцы, которые имели наибольшую положительную и наибольшую отрицательную разницу в воздействии, по сравнению с контрольными группами подобранной степени.

https://doi.org/10.1371/journal.pbio.2002811.s010

(XLSX)

S4 Таблица. Категории гомункулов, мышцы-члены которых либо все оказывают большее влияние, чем ожидалось, либо все оказывают меньшее влияние, чем ожидалось, по сравнению с гиперграфами, случайно перепрограммированными в рамках их категории гомункулов.

Эта нулевая модель требовала случайной перестройки мускулов в пределах их категории гомункула, сохраняя степень. Категории слева полностью состоят из мышц с меньшим воздействием, чем ожидалось, по сравнению с контрольными группами с подобранной степенью. Категории справа полностью состоят из мышц, оказывающих большее воздействие, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.

https://doi.org/10.1371/journal.pbio.2002811.s011

(XLSX)

S5 Таблица. Мышцы с большей или меньшей нагрузкой, чем ожидалось в случайном гиперграфе.

Эта нулевая модель требовала случайного назначения связей между костями и мышцами, сохраняя только общую степень, а не индивидуальную степень мышц. Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения.Мышцы на правой стороне оказывают большее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение и упорядочено от наибольшего к наименьшему.

https://doi.org/10.1371/journal.pbio.2002811.s012

(XLSX)

S1 Рис. Обнаружение сообщества с разными параметрами разрешения.

На этом рисунке показано, как выбор параметра разрешения во время обнаружения сообществ изменит количество и размер обнаруженных сообществ.С увеличением параметра разрешения размер отдельных сообществ уменьшается, а количество сообществ увеличивается. (a-d) Обнаружение сообщества для сети, ориентированной на мышцы, с использованием значений γ, равных 1, 2, 8 и 16 соответственно. Окончательная структура сообщества для каждого γ представляет собой согласованное разделение 100 отдельных прогонов алгоритма обнаружения сообщества.

https://doi.org/10.1371/journal.pbio.2002811.s018

(EPS)

S2 Рис. Обнаружение сообщества с разными параметрами разрешения.

Этот рисунок иллюстрирует стабильность при выбранном параметре настройки γ = 4.3. Здесь мы исследуем разбиения, созданные из близких параметров разрешения γ = 4,2 и γ = 4,4. Визуально кажется, что все три раздела имеют похожую структуру. Два соседних раздела также математически схожи: z-оценка коэффициента Рэнда [47] z Rand (γ = 4,2, γ = 4,3) = 105, z Rand (γ = 4,3, γ = 4,4) = 110 и z Rand (γ = 4,2, γ = 4,4) = 105. Окончательная структура сообщества для каждого γ представляет собой согласованное разделение 100 отдельных прогонов алгоритма обнаружения сообщества.

https://doi.org/10.1371/journal.pbio.2002811.s019

(EPS)

S3 Рис. Визуальное сравнение нулевых моделей.

Этот рисунок иллюстрирует различия в нулевых двудольных графах. (A) Исходный непереставленный двудольный граф мышца-кость. (B) Случайный нулевой двудольный граф. (C) Случайно перестроенный двудольный граф. (D) Случайно перестроенный внутри сообщества двудольный граф, используемый в основном тексте, который переставляет топологию локально, сохраняя при этом глобальную топологию.

https://doi.org/10.1371/journal.pbio.2002811.s020

(EPS)

S4 Рис. Основные результаты в зависимости от нулевой модели.

Здесь мы показываем результаты с использованием модели случайного гиперграфа или модели гиперграфа с измененной связью (перестановкой), которая не поддерживает локальные связи. (A) Оценка удара, построенная как функция степени гиперребра для случайных гиперграфов и наблюдаемого гиперграфа опорно-двигательного аппарата. (B) Оценка удара, нанесенная на график как функция степени гиперребра для переставленных гиперграфов и наблюдаемого гиперграфа опорно-двигательного аппарата.(C) Коэффициент отклонения достоверно коррелирует с гомункулярной категорией (F (1,19) = 6,67, p = 0,018, R 2 = 0,26), уменьшаясь от медиального (область 0) к латеральному (область 22) с использованием случайного нулевая модель гиперграфа. (D) Коэффициент отклонения достоверно коррелирует с гомункулярной категорией (F (1,19) = 6,86, p = 0,017, R 2 = 0,26), уменьшаясь от медиального (область 0) к латеральному (область 22) с использованием пермутированного нулевая модель гиперграфа. (E) Отклонение оценки воздействия значительно коррелирует с площадью активации моторной полосы (F (1,5) = 13.4, p = 0,014, R 2 = 0,72) с использованием случайной нулевой модели гиперграфа. Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения. (F) Отклонение оценки воздействия значимо коррелирует с площадью активации моторной полосы (F (1,5) = 13,7, p = 0,022, R 2 = 0,73) с использованием нулевой модели с пермутированным гиперграфом. Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения. (G) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,11) = 64.5, p = 6,3 × 10 −6 , R 2 = 0,85), используя случайную нулевую модель гиперграфа. Точки данных масштабируются в соответствии с количеством задействованных мышц. (H) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,11) = 70,5, p <0,0001, R 2 = 0,86), больше, чем ожидалось при перестановке — основанная на нулевой модели гиперграфа. Точки данных масштабируются в соответствии с количеством задействованных мышц. Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s021

(EPS)

S6 Рис. Исследование опорно-двигательного аппарата для альтернативной сети.

(a) Оценка удара, построенная как функция степени гиперребра для модели нулевого гиперграфа и наблюдаемого гиперграфа опорно-двигательного аппарата. (b) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,12) = 40,2, p <0,0001, R 2 = 0.77). Заштрихованные области указывают 95% доверительных интервалов, а точки данных масштабируются в соответствии с количеством задействованных мышц. Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s023

(PNG)

S7 Рис. Зондирование опорно-двигательного аппарата для альтернативной сети.

(a) Коэффициент отклонения значительно коррелирует с гомункулярной топологией (F (1,18) = 8,88, R 2 = 0,33, p = 0,0080), уменьшаясь от медиального (область 0) к латеральному (область 22) регионы.(b) Отклонение оценки воздействия достоверно коррелирует с площадью активации моторной полосы (F (1,5) = 23,4, R 2 = 0,82, p = 0,005). Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения. Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s024

(PNG)

S9 Рис. Сравнение моделей с весами костей и мышечной силой и без них.

Влияние мышц ног рассчитывалось с добавлением и без добавления анатомических значений массы кости и объема мышц.Было обнаружено, что эти воздействия значительно коррелировали друг с другом (F (1,25) = 6,83, R 2 = 0,0214, p = 0,015), что позволяет предположить, что по крайней мере в некоторых частях тела наше упрощенное сетевое представление обеспечивает разумное приближение для более биофизически точных сетевых представлений. Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s026

(PNG)

S11 Рис. Соответствие топологии сети и функции системы.

Топология сети, а именно средняя длина кратчайшего пути, значительно отрицательно коррелирует с оценкой воздействия, оцененной на основе пертурбативного моделирования динамики системы (F (1,268) = 65,1, R 2 = -0,4422, p <0,0001). Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s028

(PNG)

S12 Рис. Взаимосвязь между опорно-двигательным аппаратом и мышечным воздействием на две скелетно-мышечные сети.

Здесь мы сравниваем процентное изменение оценки и степени воздействия для каждой мышцы между опорно-двигательным аппаратом, указанным в основном тексте, и сообщенным в дополнительном тексте. Мы наблюдаем, что на оценку удара мышц больше влияют большие изменения степени, чем меньшие изменения степени (F (1,268) = 5,76, R = 0,1450, p = 0,017). Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s029

(PNG)

S13 Фиг.Альтернативный пертурбативный подход.

Чтобы установить меру воздействия на гиперреберь мышцы, объекты были перемещены в четвертое пространственное измерение, чтобы избежать произвольного выбора в трех измерениях. Альтернативным подходом было бы возмущать каждую мышцу в каждом из трех ортогональных направлений, каждый раз вычисляя воздействие и вычисляя векторную сумму этих трех результатов. Чтобы ответить на вопрос о том, как эти два подхода сравниваются, мы выполнили этот эксперимент на двудольной матрице мышцы-кость, чтобы создать два вектора 270 × 1, один кодировал оценки воздействия посредством смещения в четвертом измерении, а другой кодировал векторную сумму три ортогональных смещения.Два вектора достоверно коррелировали друг с другом (F (1,268) = 1590, R 2 = 0,856, p <0,0001).

https://doi.org/10.1371/journal.pbio.2002811.s030

(PNG)

11.6 Аппендикулярные мышцы тазового пояса и нижних конечностей — анатомия и физиология

Цели обучения

К концу этого раздела вы сможете:

  • Определить аппендикулярные мышцы тазового пояса и нижней конечности
  • Определить движение и функцию тазового пояса и нижней конечности

Аппендикулярные мышцы нижней части тела и стабилизируют тазовый пояс, который служит основой для нижних конечностей.Для сравнения, в грудном поясе движения гораздо больше, чем в тазовом. Движение тазового пояса очень мало из-за его соединения с крестцом в основании осевого скелета. Тазовый пояс имеет меньший диапазон движений, потому что он был разработан для стабилизации и поддержки тела.

Мышцы бедра

Что бы произошло, если бы тазовый пояс, соединяющий нижние конечности с туловищем, имел такой же диапазон движений, что и грудной пояс? Во-первых, ходьба потребовала бы больше энергии, если бы головки бедер не были закреплены в вертлужной впадине таза.Центр тяжести тела находится в области таза. Если бы центр тяжести не оставался неизменным, встать было бы также трудно. Таким образом, то, что мышцам ног не хватает диапазона движений и гибкости, они компенсируют размером и мощностью, облегчая стабилизацию, осанку и движения тела.

Ягодичные мышцы, двигающие бедро

Большинство мышц, которые входят в бедренную кость (бедренную кость) и перемещают ее, берут начало в тазовом поясе. Большая поясничная мышца и подвздошная мышца составляют группу подвздошно-поясничной мышцы.Одними из самых крупных и мощных мышц тела являются ягодичные мышцы или ягодичная группа. Большая ягодичная мышца самая большая; Глубоко от большой ягодичной мышцы находится средняя ягодичная мышца, а глубоко от средней ягодичной мышцы — самая маленькая из трех ягодичных мышц (рис. 11.29 и рис. 11.30).

Рисунок 11.29. Мышцы бедра и бедра. Большие и мощные мышцы бедра, которые двигают бедренную кость, обычно берут начало в тазовом поясе и переходят в бедренную кость. Мышцы, которые двигают голень, обычно берут начало на бедре и вставляются в кости коленного сустава.Передние мышцы бедра расширяют голень, но также помогают сгибать бедро. Задние мышцы бедра сгибают голень, но также помогают разгибать бедро. Комбинация ягодичных мышц и мышц бедра также приводит, отводит и вращает бедро и голень.

Рисунок 11.30 Ягодичные мышцы, двигающие бедро

Растягивающая широкая фасция — это толстая квадратная мышца в верхней части боковой поверхности бедра. Он действует как синергист средней ягодичной мышцы и подвздошно-поясничной мышцы при сгибании и отведении бедра.Это также помогает стабилизировать латеральную сторону колена, натягивая подвздошно-большеберцовый тракт (бандаж), делая его туго натянутым. Глубоко от большой ягодичной мышцы грушевидная мышца, внутренняя запирательная мышца, наружная запирательная мышца, верхний гемеллус, нижний гемеллюс и квадратная мышца бедра вращают бедренную кость в боковом направлении.

Длинная приводящая мышца, короткая приводящая мышца и большая приводящая мышца могут поворачивать бедро как медиально, так и латерально, в зависимости от положения стопы. Длинная приводящая мышца сгибает бедро, а большая приводящая мышца разгибает его.Грудная мышца приводит и сгибает бедренную кость в тазобедренном суставе. Грудная мышца расположена в бедренном треугольнике, который образуется на стыке бедра и голени, а также включает бедренный нерв, бедренную артерию, бедренную вену и глубокие паховые лимфатические узлы.

Мышцы бедра, двигающие бедренную, большеберцовую и малоберцовую кости

Глубокая фасция бедра разделяет его на медиальный, передний и задний отделы (см. Рис. 11.29 и рис. 11.31). Мышцы медиального отдела бедра отвечают за приведение бедра к бедру.Наряду с длинной приводящей мышцей, короткой приводящей мышцей, большой приводящей мышцей и грудной клеткой, тонкая мышца в виде ремня аддуктирует бедро в дополнение к сгибанию ноги в колене.

Рис. 11.31 Мышцы бедра, двигающие бедро, голень и малоберцовую кость

Мышцы переднего отдела бедра сгибают бедро и разгибают ногу. Этот отсек содержит группу четырехглавой мышцы бедра, которая на самом деле состоит из четырех мышц, которые разгибают и стабилизируют колено. Прямая мышца бедра находится на передней поверхности бедра, латеральная широкая мышца бедра находится на боковой поверхности бедра, медиальная широкая мышца бедра находится на медиальной стороне бедра, а средняя широкая мышца бедра находится между латеральной широкой мышцей бедра и медиальной широкой мышцей бедра и глубокой. к прямой мышце бедра.Общее для всех четырех сухожилий — это сухожилие четырехглавой мышцы (сухожилие надколенника), которое входит в надколенник и продолжается под ним как связка надколенника. Связка надколенника прикрепляется к бугристости большеберцовой кости. Помимо четырехглавой мышцы бедра, портняжная мышца представляет собой ленточноподобную мышцу, которая простирается от передней верхней подвздошной ости до медиальной стороны проксимального отдела большеберцовой кости. Эта универсальная мышца сгибает ногу в колене и сгибает, отводит и поворачивает ногу в сторону бедра. Эта мышца позволяет нам сидеть, скрестив ноги.

Задний отдел бедра включает мышцы, которые сгибают ногу и разгибают бедро. Три длинные мышцы задней части колена — это группа подколенного сухожилия, которая сгибает колено. Это двуглавая мышца бедра, полусухожильная и полуперепончатая мышца. Сухожилия этих мышц образуют подколенную ямку, ромбовидное пространство на задней стороне колена.

Мышцы, двигающие стопы и пальцы ног

Подобно мышцам бедра, мышцы ноги разделены глубокой фасцией на отсеки, хотя в ноге их три: передняя, ​​боковая и задняя (Рисунок 11.32 и рисунок 11.33).

Рис. 11.32 Мышцы голени Мышцы переднего отдела голени обычно отвечают за тыльное сгибание, а мышцы заднего отдела голени обычно отвечают за подошвенное сгибание. Боковые и медиальные мышцы в обоих отделах инвертируют, разворачивают и вращают стопу.

Рисунок 11.33 Мышцы, двигающие стопы и пальцы ног

Мышцы в переднем отделе голени: передняя большеберцовая мышца, длинная и толстая мышца на боковой поверхности большеберцовой кости, длинный разгибатель большого пальца стопы, расположенный глубоко под ней, и Длинный разгибатель пальцев, расположенный сбоку от него, все они способствуют подъему передней части стопы при сокращении.Тертиус малоберцовой кости, небольшая мышца, которая берет начало на передней поверхности малоберцовой кости, связана с длинным разгибателем пальцев и иногда сливается с ним, но присутствует не у всех людей. Толстые связки соединительной ткани, называемые верхним удерживателем разгибателей (поперечная связка голеностопного сустава) и нижним удерживателем разгибателей, удерживают сухожилия этих мышц на месте во время тыльного сгибания.

Боковой отсек голени включает две мышцы: длинную малоберцовую мышцу (peroneus longus) и малоберцовую мышцу (малоберцовую мышцу).Все поверхностные мышцы в заднем отделе ноги вставляются в пяточное сухожилие (ахиллово сухожилие), сильное сухожилие, которое входит в пяточную кость голеностопного сустава. Мышцы в этом отсеке большие и сильные, они удерживают человека в вертикальном положении. Самая поверхностная и видимая мышца голени — икроножная мышца. Глубоко от икроножной мышцы проходит широкая плоская камбаловидная мышца. Плантарис проходит между ними наискосок; у некоторых людей может быть две из этих мышц, в то время как подошва не наблюдается примерно в семи процентах других случаев вскрытия трупа.Сухожилие подошвенной мышцы является желательной заменой широкой фасции при герниопластике, трансплантации сухожилий и восстановлении связок. В заднем отделе голени также есть четыре глубоких мышцы: подколенная мышца, длинный сгибатель пальцев, длинный сгибатель большого пальца стопы и задняя большеберцовая мышца.

Стопа также имеет собственные мышцы, которые берут начало и вставляются в нее (аналогично внутренним мышцам руки). Эти мышцы в первую очередь обеспечивают поддержку стопы и ее свода, а также способствуют движениям пальцев ног (Рисунок 11.34 и рисунок 11.35). Основной опорой продольного свода стопы является глубокая фасция, называемая подошвенным апоневрозом, которая проходит от пяточной кости до пальцев стопы (воспаление этой ткани является причиной «подошвенного фасциита», который может поражать бегунов. стопа состоит из двух групп: в дорсальную группу входит только одна мышца, brevis разгибателя пальцев, а во вторую группу входит подошвенная группа, которая состоит из четырех слоев, начиная с самого поверхностного.

Рис. 11.34. Внутренние мышцы стопы Мышцы на тыльной стороне стопы (а) обычно разгибают пальцы ног, в то время как мышцы подошвенной стороны стопы (b, c, d) обычно сгибают пальцы ног. Подошвенные мышцы состоят из трех слоев, обеспечивая стопе силу, уравновешивающую вес тела. На этой диаграмме эти три слоя показаны с точки зрения подошвы, начиная с самого нижнего слоя непосредственно под подошвенной кожей стопы (b) и заканчивая самым верхним слоем (d), расположенным чуть ниже стопы и пальца ноги. кости.

Рисунок 11.35 Внутренние мышцы стопы

Ваши мышцы (для детей) — Nemours Kidshealth

Знаете ли вы, что в вашем теле более 600 мышц? Они делают все: от перекачивания крови по всему телу до помощи в поднятии тяжелого рюкзака. Вы контролируете одни мышцы, в то время как другие, например сердце, выполняют свою работу, даже не думая о них.

Мышцы все сделаны из одного и того же материала, типа эластичной ткани (что-то вроде материала резиновой ленты).Тысячи или даже десятки тысяч мелких волокон составляют каждую мышцу.

В вашем теле есть три разных типа мышц: гладких, мышц, сердечных, (скажем: KAR-dee-ak) мышц и скелетных, (скажем: SKEL-uh-tul) мышц.

Гладкие мышцы

Гладкие мышцы — иногда также называемые непроизвольными мышцами — обычно состоят из листов или слоев, причем один слой мышц располагается позади другого. Вы не можете контролировать этот тип мышц. Ваш мозг и тело говорят этим мышцам, что делать, а вы даже не задумываетесь об этом.Вы не можете использовать свои гладкие мышцы, чтобы создать мышцу на руке или прыгнуть в воздух.

Но гладкие мышцы работают по всему телу. В желудке и пищеварительной системе они сокращаются (сжимаются) и расслабляются, позволяя пище путешествовать по телу. Ваши гладкие мышцы пригодятся, если вы заболели и вас тошнит. Мышцы выталкивают пищу обратно из желудка, так что она выходит через пищевод (скажем: ih-SAH-fuh-gus) и выходит изо рта.

Гладкие мышцы также находятся в мочевом пузыре.Когда они расслаблены, они позволяют задерживать мочу (мочу), пока вы не дойдете до ванной. Затем они сокращаются, так что вы можете вытолкнуть мочу наружу. Эти мышцы также находятся в матке женщины, в которой развивается ребенок. Там они помогают вытолкнуть малыша из тела матери, когда ему пора родиться.

Вы также обнаружите, что за кулисами ваших глаз работают гладкие мышцы. Эти мышцы удерживают взгляд.

Страница 1

Здоровые мышцы

Мышца, составляющая сердце, называется сердечной мышцей.Он также известен как миокард (скажем: my-uh-KAR-dee-um). Толстые мышцы сердца сокращаются, чтобы выкачать кровь, а затем расслабляются, чтобы позволить крови вернуться после того, как она циркулировала по телу.

Так же, как и гладкие мышцы, сердечная мышца работает сама по себе без вашей помощи. Особая группа клеток в сердце известна как кардиостимулятор сердца, потому что она контролирует сердцебиение.

Скелетные мышцы

А теперь давайте поговорим о мышцах, о которых вы думаете, когда мы говорим «мышца», — о мышцах, которые показывают, насколько вы сильны, и позволяют бить футбольным мячом в ворота.Это ваши скелетные мышцы — иногда их называют полосатыми (скажем: STRY-ay-tud) мышцами , потому что светлые и темные части мышечных волокон делают их полосатыми (полосатая — это причудливое слово, означающее полосатый).

Скелетные мышцы — это произвольные мышцы, что означает, что вы можете контролировать то, что они делают. Ваша нога не согнется при ударе по футбольному мячу, если вы этого не захотите. Эти мышцы помогают составить опорно-двигательного аппарата, (скажем: mus-kyuh-low-SKEL-uh-tul) , систему — комбинацию ваших мышц и скелета, или костей.

Вместе скелетные мышцы работают с вашими костями, чтобы дать вашему телу силу и силу. В большинстве случаев скелетная мышца прикрепляется к одному концу кости. Он полностью проходит через сустав (место, где встречаются две кости), а затем снова прикрепляется к другой кости.

Скелетные мышцы прикреплены к костям с помощью сухожилий (скажем: TEN-dunz). Сухожилия — это связки из прочной ткани, которые работают как специальные соединительные элементы между костью и мышцами.Сухожилия прикреплены так хорошо, что, когда вы сокращаете одну из мышц, сухожилие и кость движутся вместе с ней.

Скелетные мышцы бывают самых разных размеров и форм, что позволяет им выполнять самые разные работы. Одними из самых больших и мощных мышц являются мышцы икр и бедер. Они дают вашему телу силу, необходимую для того, чтобы поднимать и толкать предметы. Мышцы на шее и верхней части спины не такие большие, но они способны на некоторые довольно удивительные вещи: попробуйте вращать головой вокруг, назад и вперед, вверх и вниз, чтобы почувствовать силу мышц в вашем теле. шея.Эти мышцы также держат вашу голову высоко.

Мышцы лица

Вы можете не думать об этом как о мускулистой части тела, но на вашем лице много мускулов. Вы можете проверить их в следующий раз, когда посмотрите в зеркало. Не все лицевые мышцы прикрепляются непосредственно к кости, как на остальной части тела. Вместо этого многие из них прикрепляются под кожей. Это позволяет вам чуть-чуть сжать лицевые мышцы и сделать десятки разных типов лиц. Даже малейшее движение может превратить улыбку в хмурый взгляд.Вы можете поднять бровь, чтобы выглядеть удивленным, или пошевелить носом.

И пока вы смотрите на свое лицо, не проходите через язык — мышцу, которая прикреплена только к одному концу! На самом деле ваш язык состоит из группы мышц, которые работают вместе, чтобы вы могли разговаривать и помогать пережевывать пищу. Высуньте язык и пошевелите им, чтобы увидеть, как работают эти мышцы.

Основные мышцы

Поскольку в вашем теле очень много скелетных мышц, мы не можем перечислить их все здесь.Но вот несколько основных:

  • В каждом плече — дельтовидная (скажем: DEL-toyd) мышца . Ваши дельтовидные мышцы помогают вам двигать плечами во всех направлениях — от размахивания битой для софтбола до пожатия плечами, когда вы не уверены в ответе.
  • грудная мышца (скажем: pek-tuh-RAH-lus) мышц находятся на каждой стороне верхней части груди. Обычно их называют грудные мышцы (скажем: PEK-tuh-rulz), или сокращенно грудные мышцы.Когда многие мальчики достигают половой зрелости, их грудные мышцы становятся больше. У многих спортсменов и бодибилдеров тоже большие грудные мышцы.
  • Ниже этих грудных мышц, под грудной клеткой, находятся ваши прямые мышцы живота (скажем: REK-tus ab-DAHM-uh-nus) мышц или брюшного пресса (скажем: ab-DAHM-uh-nulz). Их часто для краткости называют прессом.
  • Когда вы создаете мышцу на руке, вы напрягаете бицепс (скажем: BYE-seps) мышцу. Когда вы сокращаете мышцу двуглавой мышцы, вы действительно можете увидеть, как она поднимается под кожей.
  • Ваши квадрицепсы (скажем: KWAD-ruh-seps) или квадрицепсы — это мышцы передней части бедер. Многие люди, которые бегают, ездят на велосипеде или занимаются спортом, развивают большие и сильные квадрицепсы.
  • А когда тебе пора садиться? Вы будете сидеть на своей большой ягодичной мышце (скажем: GLOOT-ee-us MAK-suh-mus), мышце, которая находится под кожей и жиром в задней части!

Какая мышца самая сильная в человеческом теле?

Ответ

На этот вопрос нет однозначного ответа, поскольку есть разные способы измерения силы.Есть абсолютная сила (максимальная сила), динамическая сила (повторяющиеся движения), упругая сила (быстрое приложение силы) и силовая выносливость (выдерживание усталости).

Мышцы. В De humani corporis fabrica, Андреас Везалиус, 1543. Цифровые коллекции Национальной медицинской библиотеки.

В человеческом теле есть три типа мышц: сердечная, гладкая и скелетная.

Сердечная мышца составляет стенку сердца и отвечает за сильное сокращение сердца.Гладкие мышцы составляют стенки кишечника, матки, кровеносных сосудов и внутренних мышц глаза. Скелетные мышцы прикреплены к костям и в некоторых областях кожи (мышцы лица). Сокращение скелетных мышц помогает конечностям и другим частям тела двигаться.

Большинство источников утверждает, что в человеческом теле более 650 названных скелетных мышц, хотя некоторые цифры доходят до 840. Разногласия исходят от тех, кто считает мышцы внутри сложной мышцы.Например, двуглавая мышца плеча — сложная мышца, имеющая две головки и два разных происхождения, однако они прикрепляются к лучевому бугорку. Вы считаете это одной или двумя мышцами?

Волонтер… проверяет свою мышечную силу на ручном динаметре. Г. В. Хехт, фотограф. Цифровые коллекции Национальной медицинской библиотеки.

Хотя у большинства людей общий набор мускулов одинаковый, у разных людей есть некоторые различия. Как правило, гладкие мышцы не включаются в эту общую сумму, поскольку большинство этих мышц находятся на клеточном уровне и насчитывают миллиарды.Что касается сердечной мышцы, у нас есть только одна из них — сердце.

Мышцам даны латинские названия в соответствии с расположением, относительным размером, формой, действием, происхождением / местом прикрепления и / или количеством источников. Например, длинный сгибатель большого пальца стопы — это длинная мышца, которая сгибает большой палец ноги:

  • Сгибатель = мышца, сгибающая сустав
  • Hallicis = большой палец ноги
  • Длинный = Длинный
Гимнастика — медицинская: Гимнастик для пациентов, или тренажер для тренировки суставов и мышц человеческого тела.Цифровые коллекции Национальной медицинской библиотеки

Ниже приведены мышцы, которые были признаны самыми сильными на основании различных определений силы (перечислены в алфавитном порядке):

Наружные мышцы глаза
Мышцы глаза постоянно двигаются, чтобы изменить положение глаза. Когда голова находится в движении, внешние мышцы постоянно регулируют положение глаза, чтобы поддерживать устойчивую точку фиксации. Однако внешние мышцы глаза подвержены утомлению.За час чтения книги глаза совершают около 10 000 скоординированных движений.

Большая ягодичная мышца
Большая ягодичная мышца — самая большая мышца в теле человека. Он большой и мощный, потому что его задача — удерживать туловище в вертикальном положении. Это главная антигравитационная мышца, помогающая подниматься по лестнице.

Сердце
Самая тяжелая мышца — это сердце. Он перекачивает 2 унции (71 грамм) крови при каждом ударе сердца.Ежедневно сердце перекачивает не менее 2500 галлонов (9450 литров) крови. Сердце способно биться более 3 миллиардов раз за жизнь человека.

Масетер
Самая сильная мышца в зависимости от ее веса — это жевательная мышца. Когда все мышцы челюсти работают вместе, он может сомкнуть зубы с силой до 55 фунтов (25 кг) на резцах или 200 фунтов (90,7 кг) на молярах.

Мышцы матки
Матка находится в нижней части таза.Его мышцы считаются сильными, потому что они сокращаются, чтобы протолкнуть ребенка по родовым путям. Гипофиз выделяет гормон окситоцин, который стимулирует сокращения.

Soleus
Мышца, которая может тянуть с наибольшей силой, — это камбаловидная мышца. Он находится ниже икроножной мышцы (икроножной мышцы). Камбаловидная мышца очень важна для ходьбы, бега и танцев. Наряду с икроножными мышцами он считается очень мощной мышцей, потому что она тянет против силы тяжести, чтобы удерживать тело в вертикальном положении.

Язык
Язык — трудолюбивый. Он состоит из групп мышц и, как и сердце, всегда работает. Это помогает в процессе смешивания продуктов. Он связывает и скручивается, образуя буквы. На языке находятся язычные миндалины, которые отфильтровывают микробы. Даже когда человек спит, язык постоянно выталкивает слюну в горло.

Мышцы. В Атлас анатомии и физиологии человека , сэр Wm. Тернер и Джон Гудсир, Эдинбург, 1857 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *